Novel technique for fluorescence tomography of tumors in living animals

December 10, 2008

Fluorescent molecules - i.e. substances which can be stimulated to emit light - are extremely valuable tools in biological research and medical diagnosis. Fluorescence can be used for instance to analyze the regulation and expression of genes, to locate proteins in cells and tissues, to follow metabolic pathways and to study the location and migration of cells. Of particular importance is the combination of fluorescence imaging with novel techniques that allow tomographic three-dimensional visualization of objects in living organisms. At the Helmholtz Zentrum München - German Research Center for Environmental Health together with the Technische Universität München an own institute is concerned with the development and refinement of such new technologies: the Institute for Biological and Medical Imaging headed by Professor Vasilis Ntziachristos.

The quality of optical imaging in tissues is naturally limited, since beyond a penetration depth of a few hundred micrometers the photons are massively scattered due to interactions with cell membranes and organelles which results in blurred images. In the latest issue of the journal Proceedings of the National Academy of Sciences Prof. Ntziachristos and his team, together with colleagues from the Harvard Medical School and the Massachusetts General Hospital in Boston, USA, report on the use of the so-called early arriving photons together with tomographic principles. Early photons are the first photons that arrive onto a photon detector after illumination of tissue by an ultra-short photon pulse and undergo less scattering in comparison to photons arriving at later times. Compared to continuous illumination measurements a combination of these less scattered photons with 360-degree illumination-detection resulted in sharper and more accurate images of mice under investigation.

With this technique, called ,Early Photon Tomography' (EPT), the scientists imaged lung tumors in living mice. For this purpose they injected a substance into to the animals, which normally does not fluoresce, but becomes fluorescent after contact with certain cysteine proteases such as cathepsins. The amount of these proteases is enriched in lung tumors which allows fluorescence imaging of the tumor tissue. Comparison with conventional x-ray tomography showed, that EPT is not only a very sensitive technique for imaging of lung tumors in living organisms, but also has the potential to reveal biochemical changes that reflect the progression of the disease, which could not be detected by conventional X-ray imaging.

While early-photons are typically associated with reduced signal available for image formation, the authors demonstrated that due to the wide-field implementation, EPT operates with very small reduction in average signal strength as in conventional tomographic methods operating using continuous light illumination. In this respect EPT is a practical method for significantly improving the performance of fluorescence tomography in animals over existing implementations. At present EPT is practicable only with small animals, but - as stated by the authors of the paper - further development of the equipment can allow niche applications of the technique also with larger organisms including humans.
-end-
Publication:

Niedre, M.J., de Kleine, R.H., Aikawa, E., Kirsch, D.G., Weissleder, R., Ntziachristos, V. (2008): Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo. Proceedings of the National Academy of Sciences; Published online before print November 17, 2008, doi: 10.1073/pnas.0804798105

Helmholtz Zentrum München - German Research Center for Environmental Health

Related Photons Articles from Brightsurf:

An electrical trigger fires single, identical photons
Researchers at Berkeley Lab have found a way to generate single, identical photons on demand.

Single photons from a silicon chip
Quantum technology holds great promise: Quantum computers are expected to revolutionize database searches, AI systems, and computational simulations.

Physicists "trick" photons into behaving like electrons using a "synthetic" magnetic field
Scientists have discovered an elegant way of manipulating light using a ''synthetic'' Lorentz force -- which in nature is responsible for many fascinating phenomena including the Aurora Borealis.

Scientists use photons as threads to weave novel forms of matter
New research from the University of Southampton has successful discovered a way to bind two negatively charged electron-like particles which could create opportunities to form novel materials for use in new technological developments.

The nature of nuclear forces imprinted in photons
IFJ PAN scientists together with colleagues from the University of Milano (Italy) and other countries confirmed the need to include the three-nucleon interactions in the description of electromagnetic transitions in the 20O atomic nucleus.

Pushing photons
UC Santa Barbara researchers continue to push the boundaries of LED design a little further with a new method that could pave the way toward more efficient and versatile LED display and lighting technology.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

An advance in molecular moviemaking shows how molecules respond to two photons of light
Some of the molecules' responses were surprising and others had been seen before with other techniques, but never in such detail or so directly, without relying on advance knowledge of what they should look like.

The imitation game: Scientists describe and emulate new quantum state of entangled photons
A research team from ITMO University, MIPT and Politecnico di Torino, has predicted a novel type of topological quantum state of two photons.

What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.

Read More: Photons News and Photons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.