Great Indian Ocean earthquake of 2004 set off tremors in San Andreas fault

December 10, 2008

In the last few years there has been a growing number of documented cases in which large earthquakes set off unfelt tremors in earthquake faults hundreds, sometimes even thousands, of miles away.

New research shows that the great Indian Ocean earthquake that struck off the Indonesian island of Sumatra on the day after Christmas in 2004 set off such tremors nearly 9,000 miles away in the San Andreas fault at Parkfield, Calif.

"We found that an earthquake that happened halfway around the world could trigger a seismic signal in the San Andreas fault. It is a low-stress event and a new kind of seismic phenomenon," said Abhijit Ghosh, a University of Washington doctoral student in Earth and space sciences.

"Previous research has shown that this phenomenon, called non-volcanic tremor, was produced in the San Andreas fault in 2002 by the Denali earthquake in Alaska, but seeing this new evidence of tremor triggered by an event as distant as the Sumatra earthquake is really exciting," he said.

Ghosh is to present the findings next week (Dec. 17) in a poster at the American Geophysical Union annual meeting in San Francisco.

The Indian Ocean earthquake on Dec. 26, 2004, was measured at magnitude 9.2 and generated tsunami waves that killed a quarter-million people. It was not known, however, that an earthquake of even that magnitude could set off non-volcanic tremor so far away.

The San Andreas fault in the Parkfield region is one of the most studied seismic areas in the world. It experiences an earthquake of magnitude 6.0 on an average of every 22 years, so a variety of instruments have been deployed to record the seismic activity.

In this case, the scientists examined data from instruments placed in holes bored in the ground as part of the High-Resolution Seismic Network operated by the University of California, Berkeley, as well as information gathered by the Northern California Seismic Network operated by the U.S. Geological Survey.

Signals corresponding with non-volcanic tremor at precisely the time that seismic waves from the Indian Ocean earthquake were passing the Parkfield area were recorded on a number of instruments as far as 125 miles apart.

"It's fairly obvious. There's no question of this tremor being triggered by the seismic waves from Sumatra," Ghosh said.

Scientists have pondered whether non-volcanic tremor is related to actual slippage within an earthquake fault or is caused by the flow of fluids below the Earth's surface. Recent research supports the idea that tremor is caused by fault slippage.

"If the fault is slipping from tremor in one place, it means stress is building up elsewhere on the fault, and that could bring the other area a little closer to a big earthquake," Ghosh said.

Monitoring tremor could help to estimate how much stress has built up within a particular fault.

"If the fault is closer to failure, then even a small amount of added stress likely can produce tremor," he said. "If the fault is already at low stress, then even high-energy waves probably won't produce tremor."

The work adds to the understanding of non-volcanic tremor and what role it might play in releasing or shifting stress within an earthquake-producing fault.

"Our single-biggest finding is that very small stress can trigger tremor," Ghosh said. "Finding tremor can help to track evolution of stress in the fault over space and time, and therefore could have significant implications in seismic hazard analysis."
-end-
Co-authors of the poster are John Vidale, Kenneth Creager and Heidi Houston of the UW and Zhigang Peng of the Georgia Institute of Technology. Funding for the work came from the National Science Foundation.

For more information, contact Ghosh at (404) 667-7470 or aghosh.earth@gmail.com

For more information on the AGU poster, see http://staff.washington.edu/aghosh1/AGhoshParkfield.html

University of Washington

Related Stress Articles from Brightsurf:

Stress-free gel
Researchers at The University of Tokyo studied a new mechanism of gelation using colloidal particles.

Early life stress is associated with youth-onset depression for some types of stress but not others
Examining the association between eight different types of early life stress (ELS) and youth-onset depression, a study in JAACAP, published by Elsevier, reports that individuals exposed to ELS were more likely to develop a major depressive disorder (MDD) in childhood or adolescence than individuals who had not been exposed to ELS.

Red light for stress
Researchers from the Institute of Industrial Science at The University of Tokyo have created a biphasic luminescent material that changes color when exposed to mechanical stress.

How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS

How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.

Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.

How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.

Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.

Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.

Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.

Read More: Stress News and Stress Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.