A novel, 10,000-year study of strata compaction and sea-level rise on English coast

December 10, 2009

PHILADELPHIA -- Environmental scientists at the University of Pennsylvania and Durham University have employed a novel combination of geological and model reconstructions of wetland environments during a 10,000-year period to address spatial variations in sea-level history and provide quantitative estimates of subsidence along the east coast of England.

The findings indicate that glacial rebound -- the rise or fall of land masses that were depressed by the huge weight of ice sheets during the last glacial period -- explains differences in relative sea levels along the English coast. Current sea levels in Northeast England, the most northerly study area, have been receding to their present level for the past 4,000 years. Unlike Northeast England, however, the Tees Estuary, Humber Estuary, Lincolnshire Marshes, Fenlands and North Norfolk area all reveal sea-level histories trending upward during the past 10,000 years. Using data from sediment cores up to 20 meters deep, researchers found that sediment compaction explained the variations in sea-level observations at every study area, revealing striking correlations to the thickness of overlying sediment.

Coastal subsidence enhances recent sea-level rise, which leads to shoreline erosion and threatens to permanently submerge socio-economically and environmentally valuable wetlands. Yet the causes of subsidence remain controversial, and estimates of subsidence rates vary widely. This collaborative study offers insight into the future behavior of these environmental systems and is an effort to inform policy and management decisions for coastal protection.

"Rising sea levels threaten to permanently submerge wetland environments," said Benjamin P. Horton, assistant professor in the Department of Earth and Environmental Science at Penn. "Management decisions regarding the best way to intervene to protect these environments depend upon empirically informed, scientific data for each of the processes operating in wetland systems, including sediment compaction. This is a high-profile topic, which is subject to a great deal of controversy, especially concerning the on-going discussions of why deltas around the world are losing wetlands at a particularly alarming rate."
-end-
The study is published in the current issue of the journal Geology and was supported by funding from the National Science Foundation and the Natural Environment Research Council. It was performed by Horton and by Ian Shennan of the Department of Geography at Durham University in the United Kingdom.

University of Pennsylvania

Related Ice Sheets Articles from Brightsurf:

Ice-binding molecules stop ice growth, act as natural antifreeze
Certain molecules bind tightly to the surface of ice, creating a curved interface that can halt further ice growth.

Stem cell sheets harvested in just two days
POSTECH and Pohang Semyung Christianity Hospital joint research team develops a thermoresponsive nanotopography cell culture platform.

Ice discharge in the North Pacific set off series of climate events during last ice age
Repeated catastrophic ice discharges from western North America into the North Pacific contributed to, and perhaps triggered, hemispheric-scale changes in the Earth's climate during the last ice age.

Island-building in Southeast Asia created Earth's northern ice sheets
Tectonic processes are thought to have triggered past ice ages, but how?

How much will polar ice sheets add to sea level rise?
Over 99% of terrestrial ice is bound up in the ice sheets covering Antarctic and Greenland.

What happens between the sheets?
Adding calcium to graphene creates an extremely-promising superconductor, but where does the calcium go?

Sea level rise from ice sheets track worst-case climate change scenario
Ice sheets in Greenland and Antarctica whose melting rates are rapidly increasing have raised the global sea level by 1.8cm since the 1990s, and are matching the Intergovernmental Panel on Climate Change's worst-case climate warming scenarios.

Early Mars was covered in ice sheets, not flowing rivers
A large number of the valley networks scarring Mars's surface were carved by water melting beneath glacial ice, not by free-flowing rivers as previously thought, according to new UBC research published today in Nature Geoscience.

Antarctic ice sheets capable of retreating up to 50 meters per day
The ice shelves surrounding the Antarctic coastline retreated at speeds of up to 50 meters per day at the end of the last Ice Age, far more rapid than the satellite-derived retreat rates observed today, new research has found.

First results from NASA's ICESat-2 mission map 16 years of melting ice sheets
By comparing new measurements from NASA's ICESat-2 mission with the original ICESat mission, which operated from 2003 to 2009, scientists were able to measure precisely how the Greenland and Antarctic ice sheets have changed over 16 years.

Read More: Ice Sheets News and Ice Sheets Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.