Penn, Georgia collaboration awarded $14.6 million to expand pathogen database

December 10, 2009

PHILADELPHIA -- Researchers from the University of Pennsylvania and the University of Georgia have been awarded a five-year, $14.6 million contract from the National Institute of Allergy and Infectious Diseases, part of the US National Institutes of Health, to expand and extend work on the Eukaryotic Pathogen Genome Database Resource, http://EuPathDB.org. This revolutionary open database enables scientists to examine genes, genomes, isolates, and other attributes related to a variety of important human pathogens. By helping to identify potential vaccine antigens and drug targets, EuPathDB facilitates the search for effective diagnostics and therapeutics.

This award continues NIH funding for a production database system integrating diverse genomic-scale datasets. EuPathDB has been expanded several times based on its success in expediting infectious disease research. The latest release supports a total of 27 species, providing bioinformatics tools for researchers targeting biodefense and emerging and re-emerging pathogens.

Originally developed for Plasmodium falciparum, a microbe responsible for the most severe form of human malaria, EuPathDB has been expanded several times based on its success in expediting infectious disease research. The latest release supports a total of 27 species, providing bioinformatics tools for researchers targeting biodefense and emerging and re-emerging pathogens.

The database also targets:The EuPathDB database is one of four Pathogen Bioinformatics Resource Centers supported by the NIH and is directed by principal investigator David S. Roos, E. Otis Kendall Professor of Biology in the School of Arts and Sciences at the University of Pennsylvania. Co-investigators include Christian Stoeckert of the School of Medicine at Penn and Jessica Kissinger of the University of Georgia. Roos and Stoeckert are also affiliated with the Penn Center for Bioinformatics and the Penn Genome Frontiers Institute, and Kissinger with the Center for Tropical and Emerging Global Diseases.

Understanding the genes of an organism and how they are expressed is a critical first step in preventing or treating disease. EuPathDB provides researchers with a database that catalogues every accessible step in the chronicle of disease pathogenesis. This database and its component web sites have been used by more than 42,000 scientists over the past six months, from more than 100 countries worldwide. Meeting presentations and workshops help to ensure effective use of this resource by the scientific community.

Advances in genome technology have dramatically increased both the scale and scope of information now available for human pathogens. For example, the first Plasmodium parasite genome sequence was completed in 2002 after six years of work and a cost of $35 million. Scientists can now sequence additional strains of the parasite in just a few days, for a few thousand dollars but the raw data for a single genome can generate terabytes of data, easily overwhelming a personal computer. Additional large-scale datasets supported by EuPathDB include DNA sequence polymorphisms from the wider population, chromosomal modifications, comprehensive studies on RNA transcription and protein expression, analysis of protein-protein interactions and metabolic pathways.

Consider a researcher working to develop a malaria vaccine. First, this scientist must identify which genes are active when the parasite is living in a human host, rather than when it lives in the mosquito. They must then determine which of those genes encodes protein antigens likely to be recognized by the immune system. By taking all of these factors into account - plus many more - the researcher can narrow the many thousands of genes in the parasite genome down to a few dozen candidates for further testing.

"It has been remarkable to witness the rapid growth of biomedical research in recent years, fueled by the genomic revolution" says Roos, "and it is particularly gratifying to see the impact of bioinformatics tools such as EuPathDB. By integrating diverse sources of information -- all the genes in the genome, all the proteins in the cell, all patient responses in a population -- these databases offer great promise for improved human health."
-end-


University of Pennsylvania

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.