Poor breast cancer prognosis associated with presence of circulating tumor, cancer stem cells

December 10, 2010

San Antonio - Metastatic breast cancer patients whose blood contains circulating tumor cells (CTCs) before or after treatment with high-dose chemotherapy and blood stem cell transplant have shorter survival periods, according to a new study by researchers at The University of Texas MD Anderson Cancer Center in Houston.

The findings were presented today in a poster session at the 33rd Annual CTRC-AACR San Antonio Breast Cancer Symposium.

In addition, patients with higher percentages of epithelial cells, or the presence of a specific cellular transition, had higher chances for relapse.

"Building on the information from this study, we eventually may be able to use these molecular markers to identify breast cancer patients with a high likelihood of developing metastasis or relapsing. This may allow physicians to design specific treatments to help patients achieve better outcomes," said James M. Reuben, Ph.D., professor in MD Anderson's Department of Hematopathology, and co-corresponding author of the study.

Stem cells have common receptor

High-dose chemotherapy followed by autologous hematopoietic peripheral blood stem cell transplantation (ASCT) offers modest complete response rates for some patients with metastatic breast cancer. However, tumor cells that spread to the bone may be recruited and mobilized along with hematopoietic stem cells to increase a patient's chance of relapse.

"We hypothesized that since the breast tumor cells have the same CXRX4 receptor as hematopoietic stem cells, we might mobilize or recruit tumor cells by using a growth factor proven to mobilize blood stem cells," Reuben said.

Epithelial-to-mesenchymal transition (EMT) is recognized as an important part of metastasis. Epithelial cells line the organs and cavities of the body and usually are not mobile. Mesenchymal cells are mobile and can differentiate into many cell types, for example, to repair injury. EMT has been shown to repress E-cadherin, decrease cell-cell adhesion and increase a cell's capacity to move. An estimated 80 percent of solid tumors are cancers of the epithelial tissue.

Blood examined for epithelial cells, CTC

Aphaeresis was used to harvest blood stem cells from 21 metastatic breast cancer patients before transplantation. To determine levels of CTCs, blood samples were collected before aphaeresis (baseline) and one month after transplantation.

"We used the flow cytometry method of staining for both epithelial and stem cell markers," said Hui Gao, Ph.D., a research scientist in MD Anderson's Department of Hematopathology and co-first author of the study. "Then we enumerated the percentages of epithelial cells and cancer stem cells to see how these correlated with patient survival."

Cells, survival correlated

The median time to follow-up after transplant was 16.4 months. At follow-up, eight women were cancer free, and 13 had relapsed. The median time to relapse was nine months, and median survival was 14.4 months.

CTCs were found in six patients before and in nine patients after transplant. Patients with more than five CTCs before transplant had shorter overall survival. If five or more CTCs were found after transplant, both relapse-free and overall survival times were shorter.

Patients with percentages of CD326+ epithelial cells above the median had shorter relapse-free survival times,10 months versus 23 months. Also, patients with CTCs with mesenchymal features had a shorter relapse-free survival, seven months, compared to those who had CTCs without such features, 23 months.

Next steps

The researchers hope to carry the research forward into a prospective study in the near future.

"If we really can target CTCs with mesenchymal features, we may be able to control disease much more efficiently," said Naoto T. Ueno, M.D., Ph.D., professor in MD Anderson's Departments of Breast Medical Oncology and Stem Cell Transplantation and Cellular Therapy, and co-corresponding author of the study.
-end-
Co-authors with Gao, Reuben and Ueno include, from MD Anderson: Bang-Ning Lee, Ph.D.; Evan Cohen, B.S.; Michelle Davis, M.S.; and Antonio Giordano, M.D. Michael Mego, M.D., Ph.D., National Cancer Institute, Slovak Republic; and Massimo Cristofanilli, M.D., Fox Chase Cancer Center, also contributed to the research.

The research was funded by grants from The University of Texas Health Science Center, the National Cancer Institute, the State of Texas Rare and Aggressive Breast Cancer Research Program and an American Airlines Susan G. Komen Promise Grant.

About MD Anderson

The University of Texas MD Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. MD Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For seven of the past nine years, including 2010, MD Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

University of Texas M. D. Anderson Cancer Center

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.