From fish to man: Research reveals how fins became legs

December 10, 2012

Vertebrates' transition to living on land, instead of only in water, represented a major event in the history of life. Now, researchers reporting in the December issue of the Cell Press journal Developmental Cell provide new evidence that the development of hands and feet occurred through the gain of new DNA elements that activate particular genes.

"First, and foremost, this finding helps us to understand the power that the modification of gene expression has on shaping our bodies," says Dr. José Luis Gómez-Skarmeta of the CSIC-Universidad Pablo de Olavide-Junta de Andalucía, in Seville, Spain. "Second, many genetic diseases are associated with a 'misshaping' of our organs during development. In the case of genes involved in limb formation, their abnormal function is associated with diseases such as synpolydactyly and hand-foot-genital syndrome."

In order to understand how fins may have evolved into limbs, researchers led by Dr. Gómez-Skarmeta and his colleague Dr. Fernando Casares at the same institute introduced extra Hoxd13, a gene known to play a role in distinguishing body parts, at the tip of a zebrafish embryo's fin. Surprisingly, this led to the generation of new cartilage tissue and the reduction of fin tissue--changes that strikingly recapitulate key aspects of land-animal limb development. The researchers wondered whether novel Hoxd13 control elements may have increased Hoxd13 gene expression in the past to cause similar effects during limb evolution. They turned to a DNA control element that is known to regulate the activation of Hoxd13 in mouse embryonic limbs and that is absent in fish.

"We found that in the zebrafish, the mouse Hoxd13 control element was capable of driving gene expression in the distal fin rudiment. This result indicates that molecular machinery capable of activating this control element was also present in the last common ancestor of finned and legged animals and is proven by its remnants in zebrafish," says Dr. Casares.
-end-
Freitas et al.: "Hoxd13 contribution to the evolution of vertebrate appendages."

Cell Press

Related Zebrafish Articles from Brightsurf:

Zebrafish embryos help prove what happens to nanoparticles in the blood
What happens to the nanoparticles when they are injected into the bloodstream, for example, to destroy solid tumours?

Social experiences impact zebrafish from an early age
Study in zebrafish demonstrates that early social experiences have an effect on the behaviour of the fish even at an age when they are still not considered ''social''.

How zebrafish maintain efficient and fair foraging behaviours
New insight on how zebrafish achieve near-optimal foraging efficiency and fairness among groups has been published today in the open-access journal eLife.

How the zebrafish got its stripes
Animal patterns are a source of endless fascination, and now researchers at the University Bath have worked out how zebrafish develop their stripes.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Zebrafish teach researchers more about atrial fibrillation
Genetic research in zebrafish at the University of Copenhagen has surprised the researchers behind the study.

How decisions unfold in a zebrafish brain
Researchers were able to track the activity of each neuron in the entire brain of zebrafish larvae and reconstruct the unfolding of neuronal events as the animals repeatedly made 'left or right' choices in a behavioral experiment.

'Census' in the zebrafish's brain
Dresden scientists have succeeded in determining the number and type of newly formed neurons in zebrafish; practically conducting a 'census' in their brains.

Zebrafish 'avatars' can help decide who should receive radiotherapy treatment
To date, there is no method for clearly determining whether radiotherapy will be an effective treatment for individual cancer patients.

Special cells contribute to regenerate the heart in Zebrafish
It is already known that zebrafish can flexibly regenerate their hearts after injury.

Read More: Zebrafish News and Zebrafish Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.