Fred Hutchinson Cancer Research Center partners with GlaxoSmithKline to develop muscular dystrophy therapeutics

December 10, 2012

SEATTLE - Fred Hutchinson Cancer Research Center and GlaxoSmithKline PLC (GSK) today announced a partnership to develop therapeutics to treat an inherited form of muscular dystrophy.

The goal of the new agreement is to develop a small-molecule-based medicine to potentially reverse facioscapulohumeral muscular dystrophy, or FSHD, by inhibiting the activity of a protein that is incorrectly expressed by the DUX4 gene in people with the disease. The protein activity is what damages muscle cells and leads to progressive muscle weakness and atrophy in FSHD patients.

The genetic and disease mechanisms of FSHD were discovered by an international team of scientists led by Stephen Tapscott, M.D., Ph.D., a member of the Fred Hutch Human Biology Division, in a series of studies published between 2010 and early 2012. Tapscott will lead the Fred Hutch work in the GSK collaboration.

The team's discoveries also have implications for developing cancer immunotherapies because researchers also discovered that DUX4 regulates cancer/testis antigens. Cancer/testis antigens are encoded by genes that are normally expressed only in the human germ line but are also abnormally expressed in various tumor types, including melanoma and carcinomas of the bladder, lung and liver. This knowledge will give researchers a way to manipulate the expression of cancer/testis antigens, potentially opening the opportunity to use these antigens in a cancer vaccine.

The partnership with GSK is a first of its kind for Fred Hutch, which is also the first U.S.-based institution to sign on with GSK's "Discovery Partnership with Academia" (DPAc) program. GSK launched the program last year to combine the insight and creativity of the academic world with GSK's drug-discovery expertise to turn innovative research into medicines that benefit patients.

GSK currently has DPAc collaborations in place with Cambridge University and the University of Dundee in the U.K.

Unlike traditional licensing agreements in which the licensee is given full control to develop a discovery, the collaboration will involve GSK and Fred Hutch scientists working together to develop, test and hopefully bring to market a clinical treatment.

"GSK has huge expertise in developing agents against protein activity, so our opportunity to work with them is fantastic," Tapscott said.

"At GSK we believe that combining our drug-discovery expertise with the in-depth disease knowledge of specialist academic groups can seed innovation and help speed up the discovery and development of new medicines," said Pearl Huang, global head of DPAc. "We're excited to be expanding our academic program in North America and are looking forward to working closely with scientists like Dr. Tapscott, whose deep understanding of disease biology will complement our own work in this field."

FSHD affects about one in 20,000 individuals and usually begins in late adolescence. The effects start around the facial and upper-extremity muscles and eventually progress to muscles in the lower extremity. People with more severe FSHD become wheelchair bound and their life spans are often shortened.

In an era of flat federal research funding, this collaboration signals an increasing interest on the part of Fred Hutch to develop partnerships that further its lifesaving and innovative research.

"We're looking for more creative academic-industry partnerships like this one between Fred Hutch and GSK," said Ulrich Mueller, vice president of industry relations and technology transfer at Fred Hutch.

Tapscott's research on FSHD, which provides the scientific basis for the collaboration with GSK, was funded by Friends of FSH Research, the National Institute of Neurological Disorders and Stroke, and the National Institute of Arthritis and Musculoskeletal and Skin Diseases.

Financial terms of the Fred Hutch-GSK partnership were not disclosed.
-end-
At Fred Hutchinson Cancer Research Center, home to three Nobel laureates, interdisciplinary teams of world-renowned scientists seek new and innovative ways to prevent, diagnose and treat cancer, HIV/AIDS and other life-threatening diseases. Fred Hutch's pioneering work in bone marrow transplantation led to the development of immunotherapy, which harnesses the power of the immune system to treat cancer with minimal side effects. An independent, nonprofit research institute based in Seattle, Fred Hutch houses the nation's first and largest cancer prevention research program, as well as the clinical coordinating center of the Women's Health Initiative and the international headquarters of the HIV Vaccine Trials Network. Private contributions are essential for enabling Fred Hutch scientists to explore novel research opportunities that lead to important medical breakthroughs. For more information visit www.fhcrc.org or follow Fred Hutch on Facebook, Twitter or YouTube.

Fred Hutchinson Cancer Research Center

Related Muscular Dystrophy Articles from Brightsurf:

Using CRISPR to find muscular dystrophy treatments
A study from Boston Children's Hospital used CRISPR-Cas9 to better understand facioscapulohumeral muscular dystrophy (FSHD) and explore potential treatments by systematically deleting every gene in the genome.

Duchenne muscular dystrophy diagnosis improved by simple accelerometers
Testing for Duchenne muscular dystrophy can require specialized equipment, invasive procedures and high expense, but measuring changes in muscle function and identifying compensatory walking gait could lead to earlier detection.

New therapy targets cause of adult-onset muscular dystrophy
The compound designed at Scripps Research, called Cugamycin, works by recognizing toxic RNA repeats and destroying the garbled gene transcript.

Gene therapy cassettes improved for muscular dystrophy
Experimental gene therapy cassettes for Duchenne muscular dystrophy have been modified to deliver better performance.

Discovery points to innovative new way to treat Duchenne muscular dystrophy
Researchers at The Ottawa Hospital and the University of Ottawa have discovered a new way to treat the loss of muscle function caused by Duchenne muscular dystrophy in animal models of the disease.

Extracellular RNA in urine may provide useful biomarkers for muscular dystrophy
Massachusetts General Hospital researchers have found that extracellular RNA in urine may be a source of biomarkers for the two most common forms of muscular dystrophy, noninvasively providing information about whether therapeutic drugs are having the desired effects on a molecular level.

Tamoxifen and raloxifene slow down the progression of muscular dystrophy
Steroids are currently the only available treatment to reduce the repetitive cycles of inflammation and disease progression associated with functional deterioration in patients with muscular dystrophy (MD).

Designed proteins to treat muscular dystrophy
The cell scaffolding holds muscle fibers together and protects them from damage.

Gene-editing alternative corrects Duchenne muscular dystrophy
Using the new gene-editing enzyme CRISPR-Cpf1, researchers at UT Southwestern Medical Center have successfully corrected Duchenne muscular dystrophy in human cells and mice in the lab.

GW researcher finds genetic cause of new type of muscular dystrophy
George Washington University & St. George's University of London research, published in The American Journal of Human Genetics, outlines a newly discovered genetic mutation associated with short stature, muscle weakness, intellectual disability, and cataracts, leading researchers to believe this is a new type of congenital muscular dystrophy.

Read More: Muscular Dystrophy News and Muscular Dystrophy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.