Turning off major memory switch dulls memories

December 10, 2013

Augusta, Ga. - A faultily formed memory sounds like hitting random notes on a keyboard while a proper one sounds more like a song, scientists say.

When they turned off a major switch for learning and memory, brain cells communicated, but the relationship was superficial, said Dr. Joe Tsien, neuroscientist at the Medical College of Georgia at Georgia Regents University and Co-Director of the GRU Brain & Behavior Discovery Institute.

"We have begun to crack the neural code, which allows us to look in real time at how thoughts happen and how memories are made," Tsien said. "That has enabled us to understand for the first time how and whether the right keys are struck at the right time and in the right place and manner to make the beautiful sound of coherent memories and to compare what happens when a key element is missing."

With the NMDA receptor intact, chatter reverberates, associations are made and helpful memories - like how touching a hot stove results in a burn - are easily retrieved.

"You see a face and think of a name, you see your office, and you think you need to work; everything is associative," said Tsien, corresponding author of the study in the journal PLOS ONE. "But in mice lacking an NMDA receptor, you can tell the memory patterns are dull and dissociated."

Using the century-old Pavlovian conditioning model that first showed how repetition creates association, they found that mice lacking a functioning NMDA receptor in the hippocampus, the brain's center of learning and memory, could not recollect even something fearful.

When they played a tone, followed 20 seconds later by a mild foot shock, normal mice quickly made the association, down to the timing. The connection essentially never registered with mice lacking the NMDA receptor.

"They form the initial patterns, but don't rehearse them," said Tsien. "Their tones are flat, the association is poor, while everything we register in the healthy brain is associative." To illustrate just how flat, Postdoctoral Fellow Hui Kuang assigned musical notes to the memory activity of each, which resulted in random noise by the NMDA knockout mice compared to a dynamic rhythm from normal mice. (Hear the recordings at http://mcgsites.org/grunews/files/2013/12/Amnesic-brain-recalling-contextual-memories.mp3 and http://mcgsites.org/grunews/files/2013/12/Healthy-brain-recalling-memories.mp3.)

"By knowing what these patterns look like and what they mean, you can use this signature to measure, for example, during aging, why we begin to lose memory and to identify and test drugs that are truly effective at aiding memory," Tsien said.

"You can tell whether there is an issue with reverberation, whether your brain is repeating what you need to remember, or repeats it but somehow stores it badly, so it's not associated with the right things. This study has revealed a lot of fascinating details about what neuroscientists call the brain's neural code" Tsien said."

He wants to look at how aging affects these processes as a next step. The research team also is looking at Doogie, a mouse genetically bred by Tsien and his team in 1999 to be exceptionally smart, to see if they can also learn more about how super memories are made and what they look like.

This ability to decode how and what the brain is remembering, should one day help physicians better assess and treat conditions such as Alzheimer's and schizophrenia, Tsien said. They may find that some answers are already out there, such as drugs that boost reverberation, or a stimulant like caffeine to help retrieve a memory, Tsien said.

His team first reported decoding brain cell conversations as memories were formed and recalled in PLOS ONE in 2009. As with the new study, they used a computational algorithm to translate the neuronal conversations into some of the first pictures of what memories look like.
-end-
Tsien is a Georgia Research Alliance Eminent Scholar in Cognitive and Systems Neurobiology.

Toni Baker
Communications Director
Medical College of Georgia
Georgia Regents University
706-721-4421 Office
706-825-6473 Cell
tbaker@gru.edu

Medical College of Georgia at Augusta University

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.