New method for efficient removal of uranium and other heavy metals from water

December 10, 2013

A new and efficient method for the removal of uranium and other heavy metals from water has been developed at the University of Eastern Finland. Chemec Ltd., a Finnish chemicals industry company, has purchased the rights in the invention and will introduce the method to the commercial markets. Binding metal ions to a solid material, the CH Collector method can be used within the mining industry, and also in the removal of emissions caused by the chemicals and metals processing industries.

Chemec's CH Collector method is a potential solution to issues relating to the dangers and recovery of uranium, which have been a topic of much debate in Finland lately. Uranium is a mildly radioactive and poisonous heavy metal, which is naturally occurring in some parts of the Finnish bedrock. When mining other metals such as gold, uranium may be present as an impurity in mining wastewaters. A complete removal of uranium from solutions is difficult due to the fact that uranium takes different forms depending on the acidity of the solution. The removal of other heavy metal emissions such as lead, mercury, cadmium and zinc from waters is also challenging.

Recovering even small amounts of metal

Traditionally, metal ions are removed from solutions with the help of chemical coagulants or ion exchangers, which usually require adjustments to the solution's pH or significant extra energy in order to function efficiently. Professor Jouko Vepsäläinen's research group at the UEF School of Pharmacy has developed a new method enabling an efficient removal of metal ions from solutions without the need to use any auxiliary substances. The CH Collector method is based on the use of a solid material which collects metal ions directly from the solution. University researcher Petri Turhanen had a central role in the development of the new method.

The solid material developed by the researchers belongs to the aminobisphosphonate family, which are also used in, for example, osteoporosis medications. The invention is unique, as no other metal absorbents working on the same principle are in use. "Ion channels are formed inside the material, in which the metal ions are collected from the solution," Professor Vepsäläinen explains.

The new material collects metal ions directly from the solution. The collection of metals does not require a separate precipitation step or any adjustments to the solution's pH. For instance, an efficient recovery of uranium is possible from a very wide pH range and even in cases where the solution is rich in other naturally-occurring metal ions such as sodium, magnesium or calcium. "Unlike traditional methods, the CH Collector method also allows the recovery of metals occurring in very small concentrations."

The new method enabled practically a complete removal of uranium from water samples taken from Finnish mines. There was no need to pre-process the samples even though they contained very high concentrations of other metals possibly disturbing the process. The efficiency of the method was also tested on an ore sample that contained scandium. The sample was dissolved and then treated with the new material. The two-phase process made it possible to recover 98% of the scandium.

The new method is well-suited for the removal of metals not only from the wastewaters of the mining industry, but also from the wastewaters of the metals processing and chemical industries, which may contain heavy metals and uranium in particular.

Selective recovery of metals moves forward

At the University of Eastern Finland, inventions are currently being commercialised more frequently than ever before. According to UEF Academic Rector Jukka Mönkkönen, this is one of the goals of academic research.

"In the commercialisation of this invention, Tekes's New knowledge and business from research ideas funding instrument and the contacts found via Geological Survey of Finland played an important role. A number of companies were interested in purchasing commercial rights in the invention. The partner company was selected on the grounds of promoting as efficient and as wide a use of the invention as possible. This is why we regarded Chemec as our ideal partner," says Business Development Advisor Matti Höytö of the University of Eastern Finland.

R&D activities around the CH Collector method will continue. Chemec and the University of Eastern Finland are participating in Tekes's Green Mining Programme which seeks to enhance the selective recovery of metals and to create a novel, optimised concept for the treatment of mining industry wastewaters and process waters.

"The goal is to create a toolkit for the selective recovery of different metals with the help of bisphosphonates. In the future, these kinds of methods could enable a targeted recovery of rare and valuable earth metals from complex mixtures containing metal ions," Professor Vepsäläinen says.

"This project strengthens the position of Chemec Group on the European export markets and opens possibilities for an increasingly broad mining customer base also outside Europe," Chemec CEO Tapani Niskanen says.

Chemec has more than 25 years of experience in the manufacturing and supply of chemical solutions for industrial actors.
-end-
For further information, please contact:

Chemec Ltd.
CEO Tapani Niskanen
Tel. +358 40 123 9985
tapani.niskanen@chemec.fi

Chemec Ltd.
Sales Manager Lasse Moilanen
Tel. +358 50 388 8473
lasse.moilanen@chemec.fi

University of Eastern Finland, Wet Chemistry Alliance
Professor Jouko Vepsäläinen
Tel. +358 40 355 3256
jouko.vepsalainen@uef.fi

University of Eastern Finland, Entrepreneurship and Innovation Services
Business Development Advisor Matti Höytö
Tel. +358 40 354 5916
matti.hoyto@uef.fi

University of Eastern Finland

Related Heavy Metals Articles from Brightsurf:

Dairy cows exposed to heavy metals worsen antibiotic-resistant pathogen crisis
Dairy cows, exposed for a few years to drinking water contaminated with heavy metals, carry more pathogens loaded with antimicrobial-resistance genes able to tolerate and survive various antibiotics.

Liquid metals come to the rescue of semiconductors
Two-dimensional semiconductors offer a possible solution to the limited potential for further shrinking of traditional silicon-based electronics: the long-predicted end of 'Moore's Law'.

Heavy metals make soil enzymes 3 times weaker, says a soil scientist from RUDN University
Heavy metals suppress enzyme activity in the soil by 3-3.5 times and have especially prominent effect on the enzymes that support carbon and sulfur circulation.

Semiconductors can behave like metals and even like superconductors
The crystal structure at the surface of semiconductor materials can make them behave like metals and even like superconductors, a joint Swansea/Rostock research team has shown.

Metals could be the link to new antibiotics
Compounds containing metals could hold the key to the next generation of antibiotics to combat the growing threat of global antibiotic resistance.

Instrument may enable mail-in testing to detect heavy metals in water
MIT researchers have developed an approach called SEPSTAT, for solid-phase extraction, preservation, storage, transportation, and analysis of trace contaminants.

A new look at 'strange metals'
'Strange metals' could be the key to finally understanding high-temperature superconductors.

Flame retardants and pesticides overtake heavy metals as biggest contributors to IQ loss
Adverse outcomes from childhood exposures to lead and mercury are on the decline in the United States, likely due to decades of restrictions on the use of heavy metals, a new study finds.

Stellar heavy metals can trace history of galaxies
Astronomers have cataloged signs of nine heavy metals in the infrared light from supergiant and giant stars.

Microwave treatment is an inexpensive way to clean heavy metals from treated sewage
A team of Florida State University researchers studying new methods to remove toxic heavy metals from biosolids -- the solid waste left over after sewage treatment -- found the key is a brief spin through a microwave.

Read More: Heavy Metals News and Heavy Metals Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.