Pathway that degrades holiday turkey fuels metastasis of triple negative breast cancer

December 10, 2014

A University of Colorado Cancer Center study being presented at the San Antonio Breast Cancer Symposium shows that triple negative breast cancer cells process tryptophan to promote survival while traveling through the body in order to seed new tumor sites.

"I'm not saying that people with metastatic breast cancer shouldn't eat turkey during the holidays, but triple-negative breast cancer appears to have found a way to process tryptophan more quickly, equipping cancer cells to survive while in circulation, which allows them to metastasize," says Thomas Rogers, the paper's first author and PhD candidate in the laboratory of CU Cancer Center investigator, Jennifer Richer, PhD.

When healthy cells become detached from the foundation on which they grow, they are programmed to undergo cell death through a process known as anoikis ("without a home" in Greek). This means that in order to metastasize, cancer cells have to evade anoikis - they have to survive while in suspension, unattached from a foundation. The current study used a gene array to discover which genes were upregulated in triple negative breast cancer cells that were able to grow in suspension compared with cells that were still attached to a substrate.

"Basically, we asked what is different in cells that are able to survive being detached," Rogers says.

Many of the gene expression changes in the triple negative breast cancer cells that had learned to survive detachment were in a single metabolic pathway - the kynurenine pathway, which is responsible for degrading the essential amino acid tryptophan. The faster the kynurenine pathway, the faster tryptophan is degraded. Controlling the speed of the kynurenine pathway is the enzyme TDO2 - which happened to be the most upregulated gene in detached compared to attached triple-negative breast cancer cells.

In other words, it may be that cancer cells over-express TDO2, which speeds up the whole kynurenine pathway, and degrades more tryptophan - all of which helps these cells to escape anoikis, which allows them to survive long enough to pick up roots and move to other places in the body.

"When a cancer cell detaches and cranks up this catabolic pathway, it can metabolize tryptophan faster and promote survival," Rogers says.

Currently, drugs targeting other enzymes in the complex chain of the kynurenine pathway are already in clinical trials. For example the drug indoximod by New Link Genetics is being tested in combination with chemotherapy against metastatic breast cancer ( number NCT01792050). This drug adjusts features within the pathway to help the body's immune system more effectively target cancer cells.

"We hope that looking at other targets in this pathway could create a more effective therapy," Rogers says. "Indoximod or other compounds like it could be used in combination to not only boost the immune system to target free-floating cancer cells, but also to re-sensitize cancer cells to the programmed cell death of anoikis."

University of Colorado Anschutz Medical Campus

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to