MU researcher contributes to the study of cancer-fighting tools

December 10, 2014

COLUMBIA, Mo. - Nuclear medicine is the branch of medicine that uses radioactive materials to provide diagnostics and treatments for cancer. Often, standard protocols involve using radioactive isotopes developed to image as well as weaken cancer cells in the body. With more than 30 years of research in radiopharmaceutical chemistry, Silvia Jurisson, a researcher at the University of Missouri, is a world-renowned scientist who continues to develop breakthrough materials used in the detection and treatment of cancer.

For distinguished contributions to the field of radiopharmaceutical chemistry, and for establishing one of the top radiochemistry programs in the country, Jurisson has been named a Fellow of the American Association for the Advancement of Science (AAAS). Election as an AAAS Fellow is an honor bestowed upon AAAS members by their peers. This year, 401 members were awarded the honor by AAAS due to their scientifically or socially distinguished efforts to advance science or its applications.

"The most rewarding thing to me is to follow my students through their educational and professional careers," Juirsson said. "I've mentored thirty doctoral and graduate students who have gone on to great success in academia and industry. Also, I currently have 13 graduate students I'm mentoring in my research group; I am honored to have been selected as an AAAS Fellow for my contributions to students, to my department and the University of Missouri."

More than 10,000 hospitals worldwide use radioisotopes in medicine, and about 90% of those procedures are for diagnosis, according to the World Nuclear Association. The most common radioisotope used in diagnosis is technetium-99m. Jurisson, professor of chemistry and radiology in the College of Arts and Science and a research investigator with MU Research Reactor (MURR), has spent decades studying this isotope and other isotopes for their medical usefulness. She is collaborating with medical and veterinary scientists at MU to develop biological targeting mechanisms that help send radiation to cancerous cells and organs.

"By themselves, none of the radioisotopes will go where you want them to in the body," Jurisson said. "Often cancer cells are in hard-to-reach places--in the nooks and crannies of the body--so we have to look for ways to deliver those radioisotopes specifically where we want them to go. Our lab works on the basic chemistry and methods used to create the radioisotopes working with scientists at (MURR). Then we collaborate with medical scientists on ways to get the isotopes where they can effectively image or kill cancer cells."

Through collaboration with cancer specialists at MU, Jurisson and her lab have developed a special outer shell or coating for radioisotopes containing a biological targeting moiety that binds with receptors attached to the cancer cell. Once the isotope is injected, the shell causes the isotope to effectively "seek out" and bind with the cancer cell delivering the isotope where it images or kills the cancer.

Jurisson holds a Bachelor of Science in chemistry from the University of Delaware and a doctoral degree in inorganic chemistry from the University of Cincinnati. She was the 2012 recipient of the American Chemical Society's Glenn T. Seaborg Award in Nuclear Chemistry. She serves as a member of the Board of Directors for the Society of Radiopharmaceutical Science and serves as an associate editor for the publications, Radiochimica Acta, Nuclear Medicine and Biology, and The Journal of Radioanalytical and Nuclear Chemistry.

University of Missouri-Columbia

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to