Nav: Home

Bacteria engineered with synthetic circadian clocks

December 10, 2015

Many of the body's processes follow a natural daily rhythm or so-called circadian clock, so there are certain times of the day when a person is most alert, when the heart is most efficient, and when the body prefers sleep. Even bacteria have a circadian clock, and in a December 10 Cell Reports study, researchers designed synthetic microbes to learn what drives this clock and how it might be manipulated.

"The answer seems to be especially simple: the clock proteins sense the metabolic activity in the cell," says senior author Michael Rust, of the University of Chicago's Institute for Genomics and Systems Biology.

"This is probably because cyanobacteria are naturally photosynthetic--they're actually responsible for a large fraction of the photosynthesis in the ocean--and so whether the cell is energized or not is a good indication of whether it's day or night," he says. For photosynthetic bacteria, every night is a period of starvation, and it is likely that the circadian clock helps them grow during the day in order to prepare for nightfall.

To make their discovery, Rust and his colleagues had to separate metabolism from light exposure, and they did this by using a synthetic biology approach to make photosynthetic bacteria capable of living on sugar rather than sunlight.

"I was surprised that this actually worked--by genetically engineering just one sugar transporter, it was possible to give these bacteria a completely different lifestyle than the one they have had for hundreds of millions of years," Rust says. The findings indicate that the cyanobacteria's clock can synchronize to metabolism outside of the context of photosynthesis. "This suggests that in the future this system could be installed in microbes of our own design to carry out scheduled tasks," he says.

In a related analogy, engineers who developed electrical circuits found that synchronizing each step of a computation to an internal clock made increasingly complicated tasks possible, ultimately leading to the computers we have today. "Perhaps in the future we'll be able to use synthetic clocks in engineered microbes in a similar way," Rust says.

Other researchers have shown that molecules involved in the mammalian circadian clock are also sensitive to metabolism, but our metabolism is not so closely tied to daylight as the cyanobacteria's. Therefore, our bodies' clocks evolved to also sense light and dark.

"This is presumably why, in mammals, there are specialized networks of neurons that receive light input from the retina and send timing signals to the rest of the body," Rust explains. "So, for us it's clearly a mixture of metabolic cues and light exposure that are important."

The bacteria that live inside of our guts, however, most likely face similar daily challenges as those experienced by cyanobacteria because we give them food during the day when we eat but not during the night. "It's still an open question whether the bacteria that live inside us have ways of keeping track of time," Rust says.
-end-
The work was supported by a Burroughs-Wellcome Career Award at the Scientific Interface and by the National Institutes of Health.

Cell Reports, Pattanayak et al.: "Controlling the Cyanobacterial Clock by Synthetically Rewiring Metabolism" http://dx.doi.org/10.1016/j.celrep.2015.11.031

Cell Reports (@CellReports), published by Cell Press, is a weekly open-access journal that publishes high-quality papers across the entire life sciences spectrum. The journal features reports, articles, and resources that provide new biological insights, are thought-provoking, and/or are examples of cutting-edge research. For more information, please visit http://www.cell.com/cell-reports. To receive media alerts for Cell Press journals, contact press@cell.com.

Cell Press

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...