Researchers discover new aspect of gene regulation and possible target for cancer drugs

December 10, 2015

There are about 20,000 genes in the human genome, but not all are used in all cells at all times. At any given moment, a cell is converting only roughly half its genes into proteins. And of those active genes, about 75 percent are regulated by a process known as 'RNA polymerase pausing.' This critical from of gene regulation occurs when an enzyme that transcribes the DNA hesitates at the beginning of the gene. Much like a runner at the start of a race, this molecular machine is poised to take off, but waits for the official signal.

In work published on Dec. 11 in Science, Rockefeller University researchers and their collaborators describe a critical new regulator that helps restart a stalled RNA polymerase.

The research, led by Robert G. Roeder, Arnold and Mabel Beckman Professor and head of Rockefeller's Laboratory of Biochemistry and Molecular Biology, helps to explain how some of the most promising new cancer therapeutics act in the cell and could facilitate future drug development.

The human body is made up of more than 200 different cell types, and the specific complement of genes that are active defines one cell type from another. A skin cell uses different genes than a neuron, just as a healthy cell activates different genes than a leukemia cell.

Because gene regulation is so important, the cell uses a highly intricate, multi-step process to convert the genes encoded in our DNA into proteins. In one of the earliest steps, a molecular machine called RNA polymerase II races along the gene, transcribing the DNA letters into a message, RNA, that can later be translated into proteins.

More than a decade ago, researchers discovered that RNA polymerase II can pause at the beginning of genes.

"Most cells use around half their 20,000 genes at any given time," explains co-first author Ming Yu, a postdoc in the lab. "RNA Polymerase II is paused at about 75 percent of those genes, making it a very important form of gene regulation for the cell."

In the recent study, the team sought to identify new regulators that release the paused polymerase. They identified a complex of six proteins, known as PAF1C, that is essential for the polymerase to launch across the gene.

"In the past, researchers thought that PAF1C functioned much later in transcription," says Roeder, "but we have found a novel role for the complex at the very beginning, in the release of the poised transcription machinery." In experiments in which they reduced PAF1C levels in cells, the team found that RNA polymerase II failed to release and remained paused at the start of the gene.

The extended pause has a significant effect on gene expression. "We found that reducing PAF1C affected pausing on more than 5,000 genes," says Yu, "and that this in turn resulted in significant changes in expression levels for many of these genes."

This work has implications beyond understanding how genes are regulated, according to the researchers. Several promising cancer therapeutics in clinical trials, most notably for certain leukemias, inhibit key regulators of polymerase pausing. "Our study offers further insight into how those inhibitors work," says Roeder, "and it is likely that this knowledge will facilitate the development of more specific inhibitors that fight cancer by targeting additional aspects of polymerase pausing and release."
-end-


Rockefeller University

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.