Cloudy with a chance of warming

December 10, 2015

Clouds can increase warming in the changing Arctic region more than scientists expected, by delivering an unexpected double-whammy to the climate system, according to a new study by researchers at NOAA, the University of Colorado Boulder and colleagues.

"As the Arctic atmosphere warms and moistens, it becomes a better insulator. While we expected this to reduce the influence from clouds, which provide additional insulation, we find that clouds forming in the Arctic in these conditions appear to further warm the surface, especially in the fall and winter," said Christopher Cox, lead author of the new paper published today in Nature Communications. Cox is a research scientist with the Cooperative Institute for Research in Environmental Sciences (CIRES), who works at NOAA's Earth System Research Laboratory in Boulder, Colorado.

Clouds are a complicated character in the climate change story: They can cool the planet's surface by reflecting sunlight, and they can insulate it and keep it warm.

"To understand why and where Earth is warming, you have to understand the overall effect of clouds," Cox said.

Head north to the Arctic, and clouds' impact on climate is particularly difficult to understand, he said. The amount and manner in which clouds warm the surface is determined by an intricate dance between moisture (relative humidity), temperatures and the properties of the clouds--and that dance "is different in the Arctic, where the air is colder and drier than at lower latitudes," Cox said.

To nail down the overarching influence of Arctic clouds on temperatures, he and colleagues from CIRES, NOAA, Washington State University, Idaho and Chile analyzed measurements from three science research stations in the far north: Barrow, Alaska; Eureka, Canada; and Summit, Greenland.

They assessed things like temperature, relative humidity, and a measure of the cloud insulating properties ("the downwelling infrared cloud radiative effect"), and they looked at how those factors interacted with one another (in different parts of the infrared spectrum).

Previous work suggested that as the atmosphere itself warms and becomes more moist it becomes a better insulator, so the clouds themselves have a diminishing contribution to warming. This is likely true on a global scale: It's as if a person is already warm under a blanket and adding another blanket has little additional effect.

However, this team found a different behavior when temperature and humidity increase in the cold Arctic. There, clouds can retain their ability to warm the surface, and actually appear to be amplifying regional warming. In this cold, dry region, adding a second "blanket" can, in fact, make it even warmer.

The effect--strongest in autumn and winter--is related to the way that temperature and moisture are changing relative to each other in the region, according to the new analysis, which relied on climate modeling as well as observations. Because there is little sunlight in the Arctic in autumn and winter, the insulating properties of clouds far outweigh their shading properties, making this result all the more important, said co-author Matthew Shupe, also a CIRES researcher who works at NOAA.

He and his colleagues said their findings call for better monitoring of changes in the Arctic atmosphere, including temperature and moisture levels as well as cloud properties, and continued work to improve the representation of clouds in computer models designed to understand the rapidly evolving Arctic region.
Authors of "Humidity trends imply increased sensitivity to clouds in a warming Arctic" in Nature Communications are Christopher J. Cox (CIRES and NOAA), Von P. Walden (Washington State University), Penny M. Rowe (University of Idaho and Universidad de Santiago de Chile), and Matthew D. Shupe (CIRES and NOAA). This work was supported by the NOAA Climate Program Office (CPO) Arctic Research Program, the CIRES Visiting Fellows Program, the National Science Foundation (NSF), the Universidad de Santiago de Chile/FONDECYT/DICYT, and the US DOE Atmospheric Radiation Measurement (ARM) Program.

CIRES is a partnership of NOAA and CU-Boulder.

University of Colorado at Boulder

Related Atmosphere Articles from Brightsurf:

ALMA shows volcanic impact on Io's atmosphere
New radio images from ALMA show for the first time the direct effect of volcanic activity on the atmosphere of Jupiter's moon Io.

New study detects ringing of the global atmosphere
A ringing bell vibrates simultaneously at a low-pitched fundamental tone and at many higher-pitched overtones, producing a pleasant musical sound. A recent study, just published in the Journal of the Atmospheric Sciences by scientists at Kyoto University and the University of Hawai'i at Mānoa, shows that the Earth's entire atmosphere vibrates in an analogous manner, in a striking confirmation of theories developed by physicists over the last two centuries.

Estuaries are warming at twice the rate of oceans and atmosphere
A 12-year study of 166 estuaries in south-east Australia shows that the waters of lakes, creeks, rivers and lagoons increased 2.16 degrees in temperature and increased acidity.

What makes Saturn's atmosphere so hot
New analysis of data from NASA's Cassini spacecraft found that electric currents, triggered by interactions between solar winds and charged particles from Saturn's moons, spark the auroras and heat the planet's upper atmosphere.

Galactic cosmic rays affect Titan's atmosphere
Planetary scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) revealed the secrets of the atmosphere of Titan, the largest moon of Saturn.

Physics: An ultrafast glimpse of the photochemistry of the atmosphere
Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

Using lasers to visualize molecular mysteries in our atmosphere
Molecular interactions between gases and liquids underpin much of our lives, but difficulties in measuring gas-liquid collisions have so far prevented the fundamental exploration of these processes.

The atmosphere of a new ultra hot Jupiter is analyzed
The combination of observations made with the CARMENES spectrograph on the 3.5m telescope at Calar Alto Observatory (Almería), and the HARPS-N spectrograph on the National Galileo Telescope (TNG) at the Roque de los Muchachos Observatory (Garafía, La Palma) has enabled a team from the Instituto de Astrofísica de Canarias (IAC) and from the University of La Laguna (ULL) to reveal new details about this extrasolar planet, which has a surface temperature of around 2000 K.

An exoplanet loses its atmosphere in the form of a tail
A new study, led by scientists from the Instituto de Astrofísica de Canarias (IAC), reveals that the giant exoplanet WASP-69b carries a comet-like tail made up of helium particles escaping from its gravitational field propelled by the ultraviolet radiation of its star.

Iron and titanium in the atmosphere of an exoplanet
Exoplanets can orbit close to their host star. When the host star is much hotter than our sun, then the exoplanet becomes as hot as a star.

Read More: Atmosphere News and Atmosphere Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to