Cancer drug shows promise in reducing toxic genetic material in myotonic dystrophy

December 10, 2015

GAINESVILLE, Fla. -- A group of researchers has shown for the first time in cells and in a mouse model that a drug used to treat cancer can neutralize the toxic RNA that causes the prolonged muscle contractions and other symptoms of myotonic dystrophy type 1, the most common form of adult-onset muscular dystrophy. The researchers report their findings today Dec. 10, 2015 in the journal Cell Reports.

"This finding opens a new avenue for a therapeutic strategy for this disease," said Andrew Berglund, Ph.D., a professor of biochemistry and molecular biology in the University of Florida College of Medicine. "This is the first evidence that specifically inhibiting transcription can be effective in knocking down the toxic material that causes the disease."

In myotonic dystrophy and other related neurological disorders, the symptoms stem from repeated individual nucleotides, or "building blocks," in the RNA in muscle tissue cells that can build up over time. These repeats, called CTG expansions in myotonic dystrophy type 1, become 'toxic' when transcribed from DNA. The expansions disrupt the RNA binding proteins responsible for splicing, the 'editing' needed so that the RNA can create appropriate proteins that allow muscles to function properly.

"It's clear that the mis-splicing has a significant role in causing the disease," Berglund said.

He and colleagues from the University of Oregon, Reed College and Osaka University in Japan decided to look at actinomycin D, an antibiotic currently used to treat certain types of cancers by preventing cancer cells from transcribing, or copying, essential cancer information to new cells.

Because the anticancer compound works by binding to troublesome expansions in DNA, the researchers decided to test whether it would work in cells and a mouse model of myotonic dystrophy type 1.

They found that very small concentrations of actinomycin D resulted in almost complete correction of the mis-splicing. They also tested to see if the drug was inhibiting production of normal RNAs in the cells, and found that it altered less than 5 percent of normal RNA sequences

"There was a significant level of specificity for the toxic RNA," said Berglund, a member of the UF Center for NeuroGenetics. "Actinomycin D can reduce the toxic RNA, and also inhibit it from forming."

While this drug shows promise, Berglund said that it might not end up being the compound used in eventual clinical trials. However, the research findings do indicate that this is an approach that needs to be looked at, he said.

The next steps in the research include screening for other compounds with similar activities to actinomycin D that might be equally or more effective, exploring the possibility of modifying actinomycin D to increase its effectiveness and using the antibiotic with other inherited muscular dystrophies to see if it shows promise for those diseases.
To learn more about this research and research by other experts in the field, the UF Center for NeuroGenetics is hosting the second annual Brainstorm Symposium Dec. 14-15 at the University of Florida. See for more information about the meeting.

This work was supported by grants AR0599833 and F32AR063565 from the National Institute of Arthritis and Musculoskeletal and Skin Diseases and from the National Institutes of Health.

University of Florida

Related RNA Articles from Brightsurf:

A new RNA catalyst from the lab
On the track of evolution: a catalytically active RNA molecule that specifically attaches methyl groups to other RNAs - a research group from the University of Würzburg reports on this new discovery in Nature.

Small RNA as a central player in infections
The most important pathogenicity factors of the gastric pathogen Helicobacter pylori are centrally regulated by a small RNA molecule, NikS.

RNA as a future cure for hereditary diseases
ETH Zurich scientists have developed an RNA molecule that can be used in bone marrow cells to correct genetic errors that affect protein production.

Bringing RNA into genomics
By studying RNA-binding proteins, a research consortium known as ENCODE (Encyclopedia of DNA Elements) has identified genomic sites that appear to code for RNA molecules that influence gene expression.

RNA key in helping stem cells know what to become
If every cell has the same genetic blueprint, why does an eye cell look and act so differently than a brain cell or skin cell?

RNA structures by the thousands
Researchers from Bochum and Münster have developed a new method to determine the structures of all RNA molecules in a bacterial cell at once.

New kind of CRISPR technology to target RNA, including RNA viruses like coronavirus
Researchers in the lab of Neville Sanjana, PhD, at the New York Genome Center and New York University have developed a new kind of CRISPR screen technology to target RNA.

Discovery of entirely new class of RNA caps in bacteria
The group of Dr. Hana Cahová of the Institute of Organic Chemistry and Biochemistry of the CAS, in collaboration with scientists from the Institute of Microbiology of the CAS, has discovered an entirely new class of dinucleoside polyphosphate 5'RNA caps in bacteria and described the function of alarmones and their mechanism of function.

New RNA mapping technique shows how RNA interacts with chromatin in the genome
A group led by scientists from the RIKEN Center for Integrative Medical Sciences (IMS) in Japan have developed a new method, RADICL-seq, which allows scientists to better understand how RNA interacts with the genome through chromatin--the structure in which the genome is organized.

Characterising RNA alterations in cancer
The largest and most comprehensive catalogue of cancer-specific RNA alterations reveals new insights into the cancer genome.

Read More: RNA News and RNA Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to