Functions of global ocean microbiome key to understanding environmental changes

December 10, 2015

Athens, Ga. - The billions of marine microorganisms present in every liter of seawater represent a structured ecological community that regulates how the Earth functions in practically every way, from energy consumption to respiration. As inhabitants of the largest environment on Earth, microbial marine systems drive changes in every global system.

The function and behavior of this community will determine how the global ocean responds to broader environmental changes, according to a new review article published in the journal Science by University of Georgia marine scientist Mary Ann Moran.

The ocean microbiome covers the majority of the Earth's surface, extending an average of more than 2 miles deep to the sea floor. Made up of an extraordinary diversity of microorganisms, the ocean microbiome was one of the first microbiomes to be studied. As its distribution and makeup become better understood, questions about its functional capabilities under stress have grown.

"Marine microbes make up a vast biological network," said Moran, a Distinguished Research Professor in the UGA Franklin College of Arts and Sciences. "Microbes are responsible for virtually all the photosynthesis that occurs in the ocean, as well as the cycling of carbon, nitrogen, phosphorus and other nutrients and trace elements. They literally run the oceans."

The article recounts the history of investigations into the microbial communities that populate the ocean--and, critically, help supply a large proportion of the oxygen in the atmosphere.

"A consistent link is emerging between ocean temperature and both the composition and productivity of microbes inhabiting surface seawater," she wrote in Science. "Earth's changing climate will affect characteristics of the ocean microbiome."

Moran explains that, by the mid-1970s, the idea that microorganisms are the major consumers of energy in the sea had been formally articulated and a new paradigm established that this community played a role in every one of the Earth's major elemental cycles.

Microbes interact as communities; they respond to disturbances in their surroundings and populations shift and change as their environments are altered. Even as improved technological and data management capabilities have provided a means to greater understanding of the communities' cells, proteins, genes and molecules, linking these constituent parts with their functions remains a challenge.

"Improved understanding of the function of microbiomes is crucial, not only in the ocean but in systems as varied as the human body, agricultural soils and groundwater," Moran said. "The next decade will bring a period of rapid learning about how microbes communicate, redistribute materials and regulate activities that have implications for environmental integrity and human health."
-end-


University of Georgia

Related Microbes Articles from Brightsurf:

A new look at deep-sea microbes
Microbes found deeper in the ocean are believed to have slow population turnover rates and low amounts of available energy.

Microbes might manage your cholesterol
Researchers discover a link between human blood cholesterol levels and a gene in the microbiome that could one day help people manage their cholesterol through diet, probiotics, or entirely new types of treatment.

Can your gut microbes tell you how old you really are?
Harvard longevity researchers in collaboration with Insilico Medicine develop the first AI-powered microbiomic aging clock

What can be learned from the microbes on a turtle's shell?
Research published in the journal Microbiology has found that a unique type of algae, usually only seen on the shells of turtles, affects the surrounding microbial communities.

Life, liberty -- and access to microbes?
Poverty increases the risk for numerous diseases by limiting people's access to healthy food, environments and stress-free conditions.

Rye is healthy, thanks to an interplay of microbes
Eating rye comes with a variety of health benefits. A new study from the University of Eastern Finland now shows that both lactic acid bacteria and gut bacteria contribute to the health benefits of rye.

Gut microbes may affect the course of ALS
Researchers isolated a molecule that may be under-produced in the guts of patients.

Gut microbes associated with temperament traits in children
Scientists in the FinnBrain research project of the University of Turku discovered that the gut microbes of a 2.5-month-old infant are associated with the temperament traits manifested at six months of age.

Gut microbes eat our medication
Researchers have discovered one of the first concrete examples of how the microbiome can interfere with a drug's intended path through the body.

Microbes can grow on nitric oxide
Nitric oxide (NO) is a central molecule of the global nitrogen cycle.

Read More: Microbes News and Microbes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.