Next-generation accelerators get boost from new beam physics

December 10, 2016

UNIST has taken a major step toward laying the technical groundwork for developing next-generation high-intensity accelerators by providing a new advanced theoretical tool for the design and analysis of complex beam lines with strong coupling.

The research results achieved by Professor Moses Chung of Natural Science at UNIST in collaboration with the Princeton Plasma Physics Laboratory (PPPL) of United States and the Helmholtz Centre for Heavy Ion Research GmbH (GSI) of Germany was published in the November issue of the prestigious journal, Physical Review Letters.

Accelerators are devices that accelerate the movement of atomic-sized particles, such as electrons, protons, and ions to very high energies. They produce prompt radiation by accelerating atoms or their subatomic particles, which strike other target atoms. This striking effect of an accelerator is, then, used to examine the physics deals with natural law, including the study of nuclear structure.

The next-generation high power accelerators, on the other hand, refer to accelators for high intensities and high energies. The high-intensity beams, generated by high power accelerators not only has the potential to reduce the half-life of a radioactive substance, but can be also used to produce best candidate materials for fusion reactors.

High power accelerators get the energy they need by accelerating particles of the same charge. Increasing the beam current results in a repulsive force between charged particles and this has a strong influence on the path of the entire beam particles, which is known as "Space Charge Effect".

In 1959, two Russian physicists came up with a theory using Space Charge Effect. However, this theory excluded the phenomena, involving the vertical and horizontal motion of particle incorporation. This has made it even more difficult to design and develop a new type of high power accelerators.

In the study, Professor Chung and his team proposed a new beam physics theory, addressing the vertical and horizontal motion of particle incorporation.

The research team reported the full generalization of the KV model by including all of the linear (both external and space-charge) coupling forces, beam energy variations, and arbitrary emittance partition, which all form essential elements for phase-space manipulations.

"This theory provides important new theoretical tools for the detailed design and analysis of high-intensity beam manipulations, for which previous theoretical models are not easily applicable," Professor Chung says. "The development of next-generation high power accelerators can greatly contribute to the fusion reactor materials research, the nuclear waste management, the study on the origin of the universe, as well as the optimization of the performance of existing accelerators.
-end-
The study has been supported by the Science Research Center (SRC) Support Project and the Individual Basic Science & Engineering Research Project through the National Research Foundation of Korea.

Journal Reference

Moses Chung, Hong Qin, Ronald C. Davidson, Lars Groening, and Chen Xiao, "Generalized Kapchinskij-Vladimirskij Distribution and Beam Matrix for Phase-Space Manipulations of High-Intensity Beams", Phys. Rev. Lett., 117, (2016).

Ulsan National Institute of Science and Technology(UNIST)

Related Energy Articles from Brightsurf:

Energy System 2050: solutions for the energy transition
To contribute to global climate protection, Germany has to rapidly and comprehensively minimize the use of fossil energy sources and to transform the energy system accordingly.

Cellular energy audit reveals energy producers and consumers
Researchers at Gladstone Institutes have performed a massive and detailed cellular energy audit; they analyzed every gene in the human genome to identify those that drive energy production or energy consumption.

First measurement of electron energy distributions, could enable sustainable energy technologies
To answer a question crucial to technologies such as energy conversion, a team of researchers at the University of Michigan, Purdue University and the University of Liverpool in the UK have figured out a way to measure how many 'hot charge carriers' -- for example, electrons with extra energy -- are present in a metal nanostructure.

Mandatory building energy audits alone do not overcome barriers to energy efficiency
A pioneering law may be insufficient to incentivize significant energy use reductions in residential and office buildings, a new study finds.

Scientists: Estonia has the most energy efficient new nearly zero energy buildings
A recent study carried out by an international group of building scientists showed that Estonia is among the countries with the most energy efficient buildings in Europe.

Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.

Harvesting energy from walking human body Lightweight smart materials-based energy harvester develop
A research team led by Professor Wei-Hsin Liao from the Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK) has developed a lightweight smart materials-based energy harvester for scavenging energy from human motion, generating inexhaustible and sustainable power supply just from walking.

How much energy do we really need?
Two fundamental goals of humanity are to eradicate poverty and reduce climate change, and it is critical that the world knows whether achieving these goals will involve trade-offs.

New discipline proposed: Macro-energy systems -- the science of the energy transition
In a perspective published in Joule on Aug. 14, a group of researchers led by Stanford University propose a new academic discipline, 'macro-energy systems,' as the science of the energy transition.

How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.

Read More: Energy News and Energy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.