Nav: Home

Tracking how multiple myeloma evolves by sequencing DNA in the blood

December 10, 2017

ATLANTA - Although people with multiple myeloma usually respond well to treatment, the blood cancer generally keeps coming back. Following genetic changes in how the disease evolves over time will help to understand the disease and, eventually, deliver more effective treatments. Researchers now have successfully demonstrated techniques to track these alterations over time by analyzing cell-free DNA (cfDNA) found in blood, according to Jens Lohr, MD, PhD, a hematologist and oncologist at Dana-Farber Cancer Institute.

Traditionally, multiple myeloma progress is monitored by painful and invasive bone marrow biopsies, but those biopsies are impractical to perform repeatedly, said Lohr, who presented study results at the 59th American Society of Hematology (ASH) Annual Meeting and Exposition in Atlanta.

"We asked if you could get equivalent genetic information by monitoring cell-free DNA," he said. "The short answer is yes, in principle, all this information actually is in the blood."

The scientists began by performing whole genome sequencing of 110 blood samples from 75 randomly selected multiple myeloma patients for cfDNA, and used the resulting data to predict the utility of deeper whole exome sequencing of the cfDNA. They also obtained cfDNA, matched normal blood cells, and bone marrow myeloma cells from 10 myeloma patients at the same time point, and demonstrated that cfDNA whole exome sequencing robustly identified genetic mutations and these mutations matched up well with those found in sequencing bone marrow cells. The vast majority of clonal mutations and copy number variations in the bone marrow were also identified in cfDNA.

"We know that myeloma changes all the time, as evidenced by the constant relapses among patients," Lohr said. "When we follow the patient in real time, we clearly see in the blood how the genetics actually changes when the patient relapses. That means that we get very good information about the changes that happen every time drug resistance develops, which is something that is simply not practical with bone marrow biopsies."

cfDNA sequencing potentially can provide results that are more representative of myeloma throughout the body than bone marrow biopsies, which essentially represent one needle site. cfDNA analyses also should prove easier to standardize, since "it's very hard to mess up a blood biopsy" whereas bone marrow samples may be inconsistent, he said. Additionally, blood samples can be easily preserved and shipped for genetic tests. On the downside, however, unlike myeloma cells from bone marrow biopsies, cfDNA cannot be enriched for myeloma-specific cfDNA. Therefore, discovery-oriented whole genome and whole exome sequencing currently are only cost-effective for active myeloma. Lohr predicts that investigations of cfDNA will be complementary with those with another form of liquid biopsy, which examines circulating tumor cells (CTCs).

"The advantage of cfDNA is that it's extremely robust, you can automate it and scale it very well, and in the near future it will be relatively easy to implement in the clinic," he said.

CTCs, in turn, allow other cell components to be analyzed in addition to DNA, such as RNA, proteins, and myeloma cell structure.

"We think both kinds of liquid biopsies add value and should be used together in clinical trials in the very near future, to try to make predictions about how drug resistance develops," he said.

Lohr cautions, however, that more research needs to be done for sequencing data from any form of myeloma biopsy to significantly aid oncologists in providing today's clinical care. One limitation is that although molecularly targeted drugs for specific genetic aberrances are in clinical trials for the disease, none is yet approved by the Food & Drug Administration.
-end-
Lead funding for the research was provided by the National Cancer Institute and the American Society of Hematology. Other Dana-Farber contributors included Guangwu Guo, PhD, Charles Seifer; Jake Kloeber; Randi Isenhart; Yu-Tzu Tai, PhD; Jordan Voisine; Julia Frede, PhD; Antonis Kokkalis, PhD; Huiyoung Yun, PhD: Valeriya Dimitrova, PhD; Matthew Meyerson, MD, PhD; Nikhil Munshi, MD; Kenneth Anderson, MD; and Birgit Knoechel, MD, PhD. Additional contributors included Gavin Ha, PhD, of the Broad Institute of MIT and Harvard; and Noopur Raje, MD; Andrew Yee, MD; Elizabeth O'Donnell, MD; and Erica Gemme of Massachusetts General Hospital.

About Dana-Farber Cancer Institute

From achieving the first remissions in childhood cancer with chemotherapy in 1948, to developing the very latest new therapies, Dana-Farber Cancer Institute is one of the world's leading centers of cancer research and treatment. It is the only center ranked in the top 4 of U.S. News and World Report's Best Hospitals for both adult and pediatric cancer care.

Dana-Farber sits at the center of a wide range of collaborative efforts to reduce the burden of cancer through scientific inquiry, clinical care, education, community engagement, and advocacy. Dana-Farber/Brigham and Women's Cancer Center provides the latest in cancer care for adults; Dana-Farber/Boston Children's Cancer and Blood Disorders Center for children. The Dana-Farber/Harvard Cancer Center unites the cancer research efforts of five Harvard academic medical centers and two graduate schools, while Dana-Farber Community Cancer Care provides high quality cancer treatment in communities outside Boston's Longwood Medical Area.

Dana-Farber is dedicated to a unique 50/50 balance between cancer research and care, and much of the Institute's work is dedicated to translating the results of its discovery into new treatments for patients in Boston, and around the world.

Dana-Farber Cancer Institute

Related Dna Articles:

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.