Nav: Home

Scientists discover how birds and dinosaurs evolved to dazzle with colourful displays

December 10, 2018

Iridescence is responsible for some of the most striking visual displays in the animal kingdom. Now, thanks to a new study of feathers from almost 100 modern bird species, scientists have gained new insights into how this colour diversity evolved.

Iridescence refers to the phenomena where colour changes when an object is viewed from different angles. Birds produce this varying coloration in their feathers by using nanoscale arrays of melanin-filled organelles (melanosomes) layered with keratin. In this form of structural colouration, the shapes of melanosomes together with the thickness of keratin layers determine what colour is produced.

While melanosome morphology has previously been used to predict colour in fossil animals, melanosome variation in iridescent feathers has not been analysed on as large a scale until this study.

As reported in the journal Evolution, a team of University of Bristol researchers used scanning electron microscopy to quantify melanosome extracts from the feathers of 97 species of modern birds with iridescent plumage, taken from the collections of the Zoological Museum of Copenhagen.

The study showed that iridescent feathers contain the most varied melanosome morphologies of all types of bird coloration sampled to date. Unlike black, grey and brown feathers that always contain solid melanosomes, iridescent feathers can contain melanosomes that are hollow and/or flattened.

"We found that melanosomes in modern iridescent feathers are more diverse in shape than those found in grey, black or brown feathers combined (that also contain melanosomes)," said lead author Klara Nordén, who conducted the study during her undergraduate years at Bristol's School of Earth Sciences. "It is already known that structural coloration is responsible for 70 per cent of the colour variability in birds. These two facts might be coupled - birds evolved varied forms of melanosomes to achieve ever greater diversity in colour.

"I wanted to find out if we could improve current predictive models for fossil colour based on melanosome morphology by including all types of melanosomes found in iridescent feathers."

Dr Jakob Vinther, co-author of the study and a leading researcher in the field of paleocolour at Bristol's School of Biological Sciences, had already collected the perfect fossil samples to test the new model on.

"We had sampled Scaniacypselus, related to modern tree swifts, and Primotrogon, ancestor to modern trogons. These groups are iridescent today and have flat and hollow melanosomes. Did their 48-million-year-old ancestors from Germany also have iridescent plumage?"

Interestingly, the model predicted that Primotrogon probably was iridescent, but it used solid rather than hollow melanosomes, unlike its modern descendants.

"This demonstrates how we now have the tools to map out the evolution of iridescence in fossil lineages", said Klara, who is now a PhD student at Princeton University. "It opens the door to many new discoveries of dazzling displays in fossil birds and other dinosaurs."

The current study focused on mapping out how melanosomes vary in iridescent feathers. Further avenues of research might examine why birds utilise such diversity of melanosome types in iridescent feathers. These insights could ultimately enhance our understanding of why fossil birds or dinosaurs might have used such morphologies, revealing something about their behaviour.
-end-


University of Bristol

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".