Nav: Home

Plants as antifungal factories

December 10, 2018

Researchers from the Spanish Research Council (CSIC) at the Centre for Research in Agricultural Genomics (CRAG) and the Institute for Plant Molecular and Cellular Biology (IBMCP), in collaboration with the IATA, have developed a biotechnological tool to produce, in a very efficient manner, antifungal proteins in plants. The results of this research, that could impact the agri-food and pharmaceutical sectors, have been published this week in the Plant Biotechnology Journal.

Disease-causing fungi that infect plants, animals and humans pose a serious threat to human and animal health, food security and ecosystem resilience. More people die every year from fungal infections than from malaria. Furthermore, fungal infections can have fatal consequences for at-risk immunocompromised patients with HIV/AIDS and organ transplantation, among others. In addition, fungi are a challenge to food security because they destroy major crops globally and contaminate food and feed with mycotoxins that are detrimental to animal and human health.

New antifungals


Maria Coca, researcher at CRAG and one of the senior authors of the study, explains that "only a few classes of antifungal agents are available today, and even these are not fully effective due to the development of resistance, host toxicity, and undesirable side effects. Many of these compounds do not even comply with the regulations, and therefore they cannot be used. Thus, there is an urgent need to develop novel antifungals, whose properties and mechanisms of action represent improvements on the existing ones, and which can be applied in diverse fields, including crop and postharvest protection, preservation in cosmetics, materials and food, and animal and human health." Coca's research group, in collaboration with the IATA's researcher Jose F. Marcos, aims to develop new antifungal compounds based on the antifungal proteins (AFPs) secreted by filamentous fungi. The problem is that the synthesis of these compounds is extremely complex; hence their exploitation requires efficient, sustainable and safe production systems.

A virus at the service of biotechnology


The CSIC researcher at the IBMCP José Antonio Daros is an expert in viruses that infect plants. Through genetic engineering, Daros and his team in Valencia managed to modify the tobacco mosaic virus (TMV) so that, instead of producing its own pathogenic proteins, it produced other proteins of interest. In Barcelona, the team led by Maria Coca implemented this tool to produce antifungal proteins in leaves of the Nicotiana benthamiana plant -a plant from the tobacco family widely used in research- discovering that these leaves produced large quantities of these new antifungals.

In addition, the researchers demonstrated that extracts recovered from the N. benthamiana plants are active against pathogenic fungi, being able to protect the tomato plant from the infection by the fungus Botrytis cinerea, better known as grey mould.

The work of the CRAG, IBMCP and IATA researchers shows that the plants can be used as biofactories of antifungal proteins for commercial purposes.
-end-


Centre for Research in Agricultural Genomics (CRAG)

Related Proteins Articles:

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
Finding the proteins that unpack DNA
A new method allows researchers to systematically identify specialized proteins called 'nuclesome displacing factors' that unpack DNA inside the nucleus of a cell, making the usually dense DNA more accessible for gene expression and other functions.
A brewer's tale of proteins and beer
The transformation of barley grains into beer is an old story, typically starring water, yeast and hops.
More Proteins News and Proteins Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...