Nav: Home

Successful bladder repair using silk fibroid scaffolds

December 10, 2018

New Rochelle, NY, December 10, 2018--A team of researchers developed a novel model of partial bladder outlet obstruction (pBOO) in female swine and used this model to show that even after inducing severe urinary outlet resistance and damage to the bladder, they could achieve significant improvements in bladder capacity through bladder reconstruction using acellular bi-layer silk fibroin (BLSF) grafts. The BLSF matrices supported the growth of new tissue with contractile properties, as described in a study published in Tissue Engineering, Part A, peer-reviewed journal from Mary Ann Liebert, Inc., publishers. Click here to read the article free on the Tissue Engineering website until January 10, 2019.

The article entitled "Augmentation Cystoplasty of Diseased Porcine Bladders with Bi-layer Silk Fibroin Grafts" was coauthored by Joshua Mauney, PhD, Boston Children's Hospital and Harvard Medical School, Boston, MA, and a team of researchers from those institutions and Veterans Affairs Boston Healthcare System, West Roxbury, MA, Brigham and Women's Hospital, Boston, and The University of Massachusetts, Boston.

The severe pBOO swine had a 61% decline in bladder compliance compared to the start of the study. By 3 months after the tissue engineering/reconstruction, bladder capacity and compliance had increased significantly (79+19% and 171+75%), compared to baseline values, respectively. The BLSF scaffolds were made from aqueous silk fibroin solutions derived from Bombyx mori silkworm cocoons.

"Robust preclinical research models can be as important as the development of tissue engineered therapies themselves in making these technologies a clinical reality," says Tissue Engineering Co-Editor-in-Chief Antonios G. Mikos, PhD, Louis Calder Professor at Rice University, Houston, TX. "The disease model and bi-layer silk fibroin grafts presented in this article may enable a quicker, more effective clinical pathway to treating partial bladder outlet obstruction."
-end-
Research reported in this publication was supported by the National Institutes of Health under Award Numbers 5R21EB020860 and P41 EB002520. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

About the Journal

Tissue Engineering is an authoritative peer-reviewed journal published monthly online and in print in three parts: Part A, the flagship journal published 24 times per year; Part B: Reviews, published bimonthly, and Part C: Methods, published 12 times per year. Led by Co-Editors-in-Chief Antonios G. Mikos, PhD, Louis Calder Professor at Rice University, Houston, TX, and John P. Fisher, PhD, Fischell Family Distinguished Professor & Department Chair, and Director of the NIH Center for Engineering Complex Tissues at the University of Maryland, the Journal brings together scientific and medical experts in the fields of biomedical engineering, material science, molecular and cellular biology, and genetic engineering. Leadership of Tissue Engineering Parts B (Reviews) and Part C (Methods) is provided by Katja Schenke-Layland, PhD, Eberhard Karls University, Tübingen and John A. Jansen, DDS, PhD, Radboud University, respectively. Tissue Engineering is the official journal of the Tissue Engineering & Regenerative Medicine International Society (TERMIS). Complete tables of content and a sample issue may be viewed on the Tissue Engineering website.

About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Stem Cells and Development, Human Gene Therapy, and Advances in Wound Care. Its biotechnology trade magazine, GEN (Genetic Engineering & Biotechnology News), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 80 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website.

Mary Ann Liebert, Inc./Genetic Engineering News

Related Tissue Engineering Articles:

Keratin scaffolds could advance regenerative medicine and tissue engineering for humans
Researchers at Mossakowski Medical Research Center of the Polish Academy of Science have developed a simple method for preparing 3D keratin scaffold models which can be used to study the regeneration of tissue.
Combined tissue engineering provides new hope for spinal disc herniations
A promising new tissue engineering approach may one day improve outcomes for patients who have undergone discectomy -- the primary surgical remedy for spinal disc herniations.
Tissue engineering: The big picture on growing small intestines
CHLA surgeon Dr. Tracy Grikscheit and colleagues describe how stem cell therapies could help babies with severe intestinal issues.
Scientists use molecular tethers, chemical 'light sabers' for tissue engineering
Researchers at the University of Washington unveiled a new strategy to keep proteins intact and functional in synthetic biomaterials for tissue engineering.
UCI engineers aim to pioneer tissue-engineering approach to TMJ disorders
Here's something to chew on: One in four people are impacted by defects of the temporomandibular - or jaw - joint.
Scientists develop a cellulose biosensor material for advanced tissue engineering
I.M. Sechenov First Moscow State Medical University teamed up together with Irish colleagues to develop a new imaging approach for tissue engineering.
The use of electrospun scaffolds in musculoskeletal tissue engineering
Rotator Cuff tears affect 15 percent of 60 year olds and carry a significant social and financial burden.
Types and preparation techniques of scaffold materials in cartilage tissue engineering
Chondral defects caused by tumor, trauma, infection, congenital malformations are very common in clinical trials.
Novel method for precise, controllable cell deposition onto tissue engineering constructs
A new study presents a novel method of using a microfluidic flow cell array to achieve precise and reproducible control of cell deposition onto engineered tissue constructs to produce tunable cell patterns and generate essential integration zones.
Farewell flat biology -- Tackling infectious disease using 3-D tissue engineering
In a new invited review article, ASU Biodesign microbiologists and tissue engineers Cheryl Nickerson, Jennifer Barrila and colleagues discuss the development and application of three-dimensional (3-D) tissue culture models as they pertain to infectious disease.
More Tissue Engineering News and Tissue Engineering Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.