Nav: Home

Researchers create tiny droplets of early universe matter

December 10, 2018

Researchers have created tiny droplets of the ultra-hot matter that once filled the early universe, forming three distinct shapes and sizes: circles, ellipses and triangles.

The study, published today in Nature Physics, stems from the work of an international team of scientists and focuses on a liquid-like state of matter called a quark gluon plasma. Physicists believe that this matter filled the entire universe during the first few microseconds after the Big Bang when the universe was still too hot for particles to come together to make atoms.

CU Boulder Professor Jamie Nagle and colleagues on an experiment known as PHENIX used a massive collider at Brookhaven National Laboratory in Upton, New York, to recreate that plasma. In a series of tests, the researchers smashed packets of protons and neutrons in different combinations into much bigger atomic nuclei.

They discovered that, by carefully controlling conditions, they could generate droplets of quark gluon plasma that expanded to form three different geometric patterns.

"Our experimental result has brought us much closer to answering the question of what is the smallest amount of early universe matter that can exist," Nagle said.

Researchers from CU Boulder and Vanderbilt University lead the data analysis efforts for the PHENIX experiment.

Scientists first started studying such matter at Brookhaven's Relativistic Heavy Ion Collider (RHIC) in 2000. They crashed together the heavy nuclei of gold atoms, generating temperatures of trillions of degrees Celsius. In the resulting boil, quarks and gluons, the subatomic particles that make up all protons and neutrons, broke free from their atomic chains and flowed almost freely.

Several years later, another group of researchers reported that they seemed to have created a quark gluon plasma not by slamming together two atoms, but by crashing together just two protons.

That was surprising because most scientists assumed that lone protons could not deliver enough energy to make anything that could flow like a fluid.

Nagle and his colleagues devised a way to test those results in 2014: If such tiny droplets behaved like liquid, then they should hold their shape.

As he explained, "Imagine that you have two droplets that are expanding into a vacuum. If the two droplets are really close together, then as they're expanding out, they run into each other and push against each other, and that's what creates this pattern."

In other words, if you toss two stones into a pond close together, the ripples from those impacts will flow into each other, forming a pattern that resembles an ellipse. The same could be true if you smashed a proton-neutron pair, called a deuteron, into something bigger, Nagle and Romatschke reasoned. Likewise, a proton-proton-neutron trio, also known as a helium-3 atom, might expand out into something akin to a triangle.

And that's exactly what the PHENIX experiment found: collisions of deuterons formed short-lasting ellipses, helium-3 atoms formed triangles and a single proton exploded in the shape of a circle.

The results, the researchers said, could help theorists better understand how the universe's original quark gluon plasma cooled over milliseconds, giving birth to the first atoms in existence.
-end-
The new study includes co-authors from 65 institutions. Co-authors from CU Boulder include postdoctoral researchers Ron Belmont and Darren McGlinchey and graduate student Javier Orjeula-Koop, all in physics.

University of Colorado at Boulder

Related Plasma Articles:

Plasma-driven biocatalysis
Compared with traditional chemical methods, enzyme catalysis has numerous advantages.
How bacteria protect themselves from plasma treatment
Considering the ever-growing percentage of bacteria that are resistant to antibiotics, interest in medical use of plasma is increasing.
A breakthrough in the study of laser/plasma interactions
Researchers from Lawrence Berkeley National Laboratory and CEA Saclay have developed a particle-in-cell simulation tool that is enabling cutting-edge simulations of laser/plasma coupling mechanisms.
Researchers turn liquid metal into a plasma
For the first time, researchers at the University of Rochester's Laboratory for Laser Energetics (LLE) have found a way to turn a liquid metal into a plasma and to observe the temperature where a liquid under high-density conditions crosses over to a plasma state.
How black holes power plasma jets
Cosmic robbery powers the jets streaming from a black hole, new simulations reveal.
Give it the plasma treatment: strong adhesion without adhesives
A Japanese research team at Osaka University used plasma treatment to make fluoropolymers and silicone resin adhere without any adhesives.
Chemotherapeutic drugs and plasma proteins: Exploring new dimensions
This review provides a bird's eye view of interaction of a number of clinically important drugs currently in use that show covalent or non-covalent interaction with serum proteins.
The coming of age of plasma physics
The story of the generation of physicists involved in the development of a sustainable energy source, controlled fusion, using a method called magnetic confinement.
Intense microwave pulse ionizes its own channel through plasma
More than 30 years ago, researchers theoretically predicted the ionization-induced channeling of an intense microwave beam propagating through a neutral gas (>103 Pa) -- and now it's finally been observed experimentally.
Plasma thruster: New space debris removal technology
A Japanese and Australian research group has discovered new technology to remove space debris using a single propulsion system in a helicon plasma thruster.
More Plasma News and Plasma Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.