Natural ecosystems protect against climate change

December 10, 2019

The identification of natural carbon sinks and understanding how they work is critical if humans are to mitigate global climate change. Tropical coastal wetlands are considered important but, so far, there is little data to show the benefits. This study, led by the University of Göttingen with the Leibniz Centre for Tropical Marine Research in Bremen, and the University of Bremen showed that mangrove ecosystems need to be conserved and restored as part of the battle against rising carbon levels in the atmosphere. The research was published in Global Change Biology.

Researchers conducted the study in the mangrove-fringed Segara Anakan Lagoon in Java, Indonesia. This coastal lagoon is known to be one of the most effective carbon sinks amongst mangrove ecosystems around the world. The researchers analysed a five-meter-deep core of sediment for its age and biogeochemical composition, as well as elements, pollen and spores. They investigated four different time periods across 400 years and varying climates, integrating data from ecological and societal changes with land and coastal changes.

The results show that the environmental dynamics in the lagoon and carbon accumulation were controlled mainly by fluctuations in the climate and human activity. The researchers found that the interaction of these two factors affected the lagoon's sediment and saltiness, which then went on to alter the composition of the organic matter (which contains carbon), and how it was deposited in the lagoon thus adding to the "sink of carbon". They also found that the weather was the chief driver in washing carbon compounds, in the form of organic matter, to the lagoon from remote areas far from the coast. In earlier times, these remote areas consisted of natural mixed forest but more often now they are agricultural land.

Coastal lagoons, such as Segara Anakan, are particularly threatened both by destruction of the mangroves by people and the effects of global environmental change, such as rising sea levels. The rising water in turn causes coastal erosion, extreme floods and habitat loss, which endangers society. "Our research shows that people need to prioritise mangrove ecosystems for conservation and restoration because mangroves absorb carbon efficiently," says first author Dr Kartika Anggi Hapsari from the Department of Palynology and Climate Dynamics at Göttingen University. "It is not enough just to focus on cutting carbon emissions. Society needs to also identify efficient and natural ecosystems, like those dominated by mangrove vegetation, to remove carbon."

"This research also really emphasises the importance of interdisciplinary working," Hapsari adds. "In this case, palaeoecological researchers, who look at organism and environmental interactions across geologic timescales, worked with researchers from biogeochemistry, who look at organic chemical compounds in sediment, historical cartography and socio-economy to relate the changes in landscape and socioeconomic condition over time. By combining different perspectives, we can be sure our results reach the right conclusion and are meaningful."
-end-
Original publication: K Anggi Hapsari et al. Intertwined effects of climate and land use change on environmental dynamics and carbon accumulation in a mangrove-fringed coastal lagoon in Java, Indonesia, Global Change Biology (2019). DOI: 10.1111/gcb.14926

Article: https://doi.org/10.1111/gcb.14926

Contact

Dr Kartika Anggi Hapsari
University of Göttingen
Department of Palynology and Climate Dynamics
Wilhelm-Weber Straße 2a, 37073 Göttingen, Germany
Tel: +49 (0)551 39 7873
Email: kartika.hapsari@biologie.uni-goettingen.de

Dr Tim Jennerjahn
Leibniz Centre for Tropical Marine Research, Bremen
Tel: +49 (04)21 23800-44
Email: tim.jennerjahn@leibniz-zmt.de

University of Göttingen

Related Carbon Articles from Brightsurf:

The biggest trees capture the most carbon: Large trees dominate carbon storage in forests
A recent study examining carbon storage in Pacific Northwest forests demonstrated that although large-diameter trees (21 inches) only comprised 3% of total stems, they accounted for 42% of the total aboveground carbon storage.

Carbon storage from the lab
Researchers at the University of Freiburg established the world's largest collection of moss species for the peat industry and science

Carbon-carbon covalent bonds far more flexible than presumed
A Hokkaido University research group has successfully demonstrated that carbon-carbon (C-C) covalent bonds expand and contract flexibly in response to light and heat.

Metal wires of carbon complete toolbox for carbon-based computers
Carbon-based computers have the potential to be a lot faster and much more energy efficient than silicon-based computers, but 2D graphene and carbon nanotubes have proved challenging to turn into the elements needed to construct transistor circuits.

Cascades with carbon dioxide
Carbon dioxide (CO(2)) is not just an undesirable greenhouse gas, it is also an interesting source of raw materials that are valuable and can be recycled sustainably.

Two-dimensional carbon networks
Lithium-ion batteries usually contain graphitic carbons as anode materials. Scientists have investigated the carbonic nanoweb graphdiyne as a novel two-dimensional carbon network for its suitability in battery applications.

Can wood construction transform cities from carbon source to carbon vault?
A new study by researchers and architects at Yale and the Potsdam Institute for Climate Impact Research predicts that a transition to timber-based wood products in the construction of new housing, buildings, and infrastructure would not only offset enormous amounts of carbon emissions related to concrete and steel production -- it could turn the world's cities into a vast carbon sink.

Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?

First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.

How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.

Read More: Carbon News and Carbon Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.