Nav: Home

Quantum expander for gravitational-wave observatories

December 10, 2019

Ultra-stable laser light that was stored in optical resonators of up to 4km length enabled the first observations of gravitational waves from inspirals of binary black holes and neutron stars. Due to the rather low bandwidth of the optical resonator system, however, the scientifically highly interesting post-merger signals at frequencies above a few hundred hertz could not be resolved. Such information would give access to the physics of neutron stars, allowing to study the ultra-dense quantum matter and possibly to find the missing link between gravity and quantum physics.

Recently, scientists MSc. Mikhail Korobko and Prof. Roman Schnabel from the University of Hamburg and Dr. Yiqiu Ma and Prof. Yanbei Chen from the California Institute of Technology proposed a novel all-optical approach to expanding the detection bandwidth of gravitational-wave observatories towards kilohertz frequencies.

What they call 'quantum expander' takes advantage of squeezing the quantum uncertainty of the laser light inside the optical resonator system. While squeezing the quantum uncertainty of the laser light before injection into the resonator system is already routinely used in all gravitational-wave observatories since April 2019, the new add-on will specifically improve the signal-to-noise-ratio at kilohertz frequencies, in fact, without deteriorating today's high performance at lower frequencies.

The scientists propose placing a nonlinear crystal inside the so-called signal-recycling cavity, which is a subsystem in every gravitational-wave observatory today and pump this crystal with green laser light having half the wavelength of the main laser light used in the observatory. The interaction between the pump and the main light leads to a squeezed uncertainty in the quantum fluctuations of the main laser. When the signal-recycling cavity length is controlled to remain a non-integer multiple of the laser wavelength, especially the high frequency quantum fluctuations of the laser light are squeezed in addition to any squeezing injected from the outside.

The newly invented 'quantum expander' is fully compatible with previously invented quantum-noise-suppression techniques. It is intrinsically stable and doesn't require significant modifications to the general topology of the observatories. What it does require is a further improved quality of optical components for further reduction in loss of photons. The 'quantum expander' may find applications beyond gravitational-wave detection in the areas of quantum metrology and quantum optomechanics.
Their research results were recently published in Light: Science and Applications.

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

Related Quantum Articles:

Quantum leap: Photon discovery is a major step toward at-scale quantum technologies
A team of physicists at the University of Bristol has developed the first integrated photon source with the potential to deliver large-scale quantum photonics.
USTC realizes the first quantum-entangling-measurements-enhanced quantum orienteering
Researchers enhanced the performance of quantum orienteering with entangling measurements via photonic quantum walks.
A convex-optimization-based quantum process tomography method for reconstructing quantum channels
Researchers from SJTU have developed a convex-optimization-based quantum process tomography method for reconstructing quantum channels, and have shown the validity to seawater channels and general channels, enabling a more precise and robust estimation of the elements of the process matrix with less demands on preliminary resources.
A quantum of solid
Researchers in Austria use lasers to levitate and cool a glass nanoparticle into the quantum regime.
What a pair! Coupled quantum dots may offer a new way to store quantum information
Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have for the first time created and imaged a novel pair of quantum dots -- tiny islands of confined electric charge that act like interacting artificial atoms.
Quantum physics: On the way to quantum networks
Physicists at Ludwig-Maximilians-Universitaet (LMU) in Munich, together with colleagues at Saarland University, have successfully demonstrated the transport of an entangled state between an atom and a photon via an optic fiber over a distance of up to 20 km -- thus setting a new record.
How we learn is a quantum-like manner!
It brings people new perspectives on understanding how human brains run.
How sensitive can a quantum detector be?
Measuring the energy of quantum states requires detecting energy changes so exceptionally small they are hard to pick out from background fluctuations, like using only a thermometer to try and work out if someone has blown out a candle in the room you're in.
Spinning quantum dots
A new paper in EPJ B presents a theoretical analysis of electron spins in moving semiconductor quantum dots, showing how these can be controlled by electric fields in a way that suggests they may be usable as information storage and processing components of quantum computers.
In leap for quantum computing, silicon quantum bits establish a long-distance relationship
In an important step forward in the quest to build a quantum computer using silicon-based hardware, researchers at Princeton have succeeded in making possible the exchange of information between two qubits located relatively far apart -- about the length of a grain of rice, which is a considerable distance on a computer chip.
More Quantum News and Quantum Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at