Computational method provides faster high-resolution mass spectrometry imaging

December 10, 2020

A new computational mass spectrometry imaging method enables researchers to achieve high mass resolution and high spatial resolution for biological samples while providing data sets exponentially faster.

Researchers at the Beckman Institute for Advanced Science and Technology developed a subspace mass spectrometry imaging approach that accelerates the speed of data acquisition -- without sacrificing the quality -- by designing a model-based reconstruction strategy.

The technique, which was developed using animal models, could have important implications for many applications, including analytical chemistry and clinical studies, with results available at a fraction of the time. It also can detect a wide range of biomolecules -- from small molecules such as neurotransmitters and amino acids to larger molecules such as lipids or peptides.

The paper "Accelerating Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry Imaging Using a Subspace Approach" was published in the Journal of the American Society of Mass Spectrometry.

"Fourier transform-ion cyclotron resonance is a really powerful instrument, providing the highest mass resolution," said Yuxuan Richard Xie, a bioengineering graduate student at the University of Illinois Urbana-Champaign, who is first author on the paper. "But one disadvantage of FT-ICR is it's very slow. So essentially, if people want to achieve a certain mass resolution, they have to wait days to acquire data sets. Our computational approach speeds up this acquisition process, potentially from one day to maybe one to two hours -- basically a tenfold increase in data acquisition speed."

"Our method is changing the way that we acquire the data," Xie said. "Instead of acquiring mass spectra per pixel, the technique recognizes the redundancy in the high-dimensional imaging data and uses a low-dimensional subspace model to exploit this redundancy to reconstruct multispectral images from only a subset of the data."

Xie collaborated with Fan Lam, an assistant professor of bioengineering, and Jonathan V. Sweedler, the James R. Eiszner Family Endowed Chair in Chemistry and the director of the School of Chemical Sciences, who are co-principal investigators on the paper. Daniel Castro, a graduate student in molecular and integrative physiology, also contributed.

"We have been using subspace models in our MRI and MR spectroscopic imaging work for a long time," Lam said. "It is really nice to see that it also has great potentials for a different biochemical imaging modality."

"The ability to acquire enhanced chemical information and the locations of the chemicals in a complex sample such as a section of a brain becomes enabling for our neurochemical research," Sweedler said.

The subspace imaging concept was pioneered by Zhi-Pei Liang, a professor of electrical and computer engineering and full-time Beckman faculty member, who is a world-leading expert in MRI and MRSI.

The research continues as researchers seek to apply the technique to 3D imaging. "(The approach) could have a much larger impact for the scientific community for 3D imaging of larger areas, such as the brain," Xie said. "Because if we do 50 slices on FT-ICR, it would take weeks right now, but (with this technique) we can achieve decent coverage maybe within days.

"I believe that computational imaging, especially the data driven approach, is like a new shining star. It's getting more and more powerful, and we should definitely utilize some of those techniques for chemical analysis of tissue through mass spectrometry imaging."
Editor's note: The paper "Accelerating Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry Imaging Using a Subspace Approach" is online at

Beckman Institute for Advanced Science and Technology

Related Mass Spectrometry Articles from Brightsurf:

Discovery of a new mass extinction
It's not often a new mass extinction is identified; after all, such events were so devastating they really stand out in the fossil record.

How vitamin C could help over 50s retain muscle mass
New research shows that vitamin C could help over 50s retain muscle mass in later life.

Oncotarget: Tumor markers for carcinoma identified by imaging mass spectrometry
Volume 11, Issue 28 of Oncotarget features 'Lipid and protein tumor markers for head and neck squamous cell carcinoma identified by imaging mass spectrometry' by Schmidt et, al. which reported that the authors used MALDI imaging mass spectrometry and immunohistochemistry to seek tumor-specific expression of proteins and lipids in HNSCC samples.

Nontargeted mass spectrometry reveals PFAS substitutes in New Jersey soils
Using a nontargeted mass-spectral approach, researchers identified the presence of chloro-perfluoro-polyether-carboxylate compounds (ClPFPECAs) in soils across the state of New Jersey.

Large-scale analysis of protein arginine methylation by mass spectrometry
In this research, the researchers offer an overview on state-of-the-art approaches for the high-confidence identification and accurate quantification of protein arginine methylation by high-resolution mass spectrometry methods, which comprise the development of both biochemical and bioinformatics methods.

Proximity of hospitals to mass shootings in US
Nontrauma center hospitals were the nearest hospitals to most of the mass shootings (five or more people injured or killed by a gun) that happened in the US in 2019.

Chemists use mass spectrometry tools to determine age of fingerprints
Chemists at Iowa State University may have solved a puzzle of forensic science: How do you determine the age of a fingerprint?

Keeping guns away from potential mass shooters
Researchers from Michigan State University measured the extent to which mass shootings are committed by domestic violence perpetrators, as well as identyifying how they illegally obtain guns, suggesting how firearm restrictions may prevent these tragedies.

Who is left behind in Mass Drug Administration?
Ensuring equity in the prevention of neglected tropical diseases (NTDs) is critical to reach NTD elimination goals as well as to inform Universal Health Coverage (UHC).

A mechanism capable of preserving muscle mass
By studying the young and aging muscles in mice, researchers from the Myology Research Center (Sorbonne Universite-Inserm) of the Institute of Myology identified a protein, CaVbeta1E that activates the factor GDF5.

Read More: Mass Spectrometry News and Mass Spectrometry Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to