The greening of the earth is approaching its limit

December 10, 2020

When plants absorb this gas to grow, they remove it from the atmosphere and it is sequestered in their branches, trunk or roots. An article published today in Science shows that this fertilizing effect of CO2 is decreasing worldwide, according to the text co-directed by Professor Josep Peñuelas of the CSIC at CREAF and Professor Yongguan Zhang of the University of Nanjin, with the participation of CREAF researchers Jordi Sardans and Marcos Fernández. The study, carried out by an international team, concludes that the reduction has reached 50% progressively since 1982 due basically to two key factors: the availability of water and nutrients. "There is no mystery about the formula, plants need CO2, water and nutrients in order to grow. However much the CO2 increases, if the nutrients and water do not increase in parallel, the plants will not be able to take advantage of the increase in this gas", explains Professor Josep Peñuelas. In fact, three years ago Prof. Peñuelas already warned in an article in Nature Ecology and Evolution that the fertilising effect of CO2 would not last forever, that plants cannot grow indefinitely, because there are other factors that limit them.

If the fertilizing capacity of CO2 decreases, there will be strong consequences on the carbon cycle and therefore on the climate. Forests have received a veritable CO2 bonus for decades, which has allowed them to sequester tons of carbon dioxide that enabled them to do more photosynthesis and grow more. In fact, this increased sequestration has managed to reduce the CO2 accumulated in the air, but now it is over. "These unprecedented results indicate that the absorption of carbon by vegetation is beginning to become saturated. This has very important climate implications that must be taken into account in possible climate change mitigation strategies and policies at the global level. Nature's capacity to sequester carbon is decreasing and with it society's dependence on future strategies to curb greenhouse gas emissions is increasing", warns Josep Peñuelas.

The study published in Science has been carried out using satellite, atmospheric, ecosystem and modelling information. It highlights the use of sensors that use near-infrared and fluorescence and are thus capable of measuring vegetation growth activity.

Less water and nutrients

According to the results, the lack of water and nutrients are the two factors that reduce the capacity of CO2 to improve plant growth. To reach this conclusion, the team based itself on data obtained from hundreds of forests studied over the last 40 years. "These data show that concentrations of essential nutrients in the leaves, such as nitrogen and phosphorus, have also progressively decreased since 1990," explains researcher Songhan Wang, the first author of the article.

The team has also found that water availability and temporal changes in water supply play a significant role in this phenomenon. "We have found that plants slow down their growth, not only in times of drought, but also when there are changes in the seasonality of rainfall, which is increasingly happening with climate change," explains researcher Yongguan Zhang.
Reference article:

Wang S, Zhang YG, Ju W, Chen, J, Ciais P, Cescatti A, Sardans J, Janssens IA, Sardans, J, Fernández-Martínez, M, ... Penuelas J (2020). Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science, DOI: 10.1126/science.abb7772

Spanish National Research Council (CSIC)

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to