Genetic differences important in Alzheimer's diagnosis

December 10, 2020

The two used methods for detecting amyloid pathology in Alzheimer's disease do not give unambiguous results, with the risk of incorrect or delayed care interventions. Now, researchers at Karolinska Institutet in Sweden have found genetic explanations for the differences. The study is published in Molecular Psychiatry and may be important for more individual diagnostics and the development of future drugs.

Alzheimer's disease is the most common dementia disease and leads to gradual memory loss and premature death. Approximately 120,000 people in Sweden have Alzheimer's and there are approximately 50 million people worldwide. According to Hjärnfonden, the number will increase by 70 percent in 50 years, partly because we are living longer and longer.

One of the earliest signs of Alzheimer's is a pathological accumulation of amyloid protein forming insoluble deposits in the brain, also called plaques. This process can last for many years without appreciably affecting the person's cognitive ability.

Amyloid plaques are present in the brain from an early stage of Alzheimer's disease, already before mild cognitive impairment. At the same time, an early diagnosis is important for care interventions that could dampen the course of the disease.

Today, brain imaging of amyloid plaques with a PET camera and analysis of cerebrospinal fluid, CSF, from the spinal cord are the accepted methods for detecting pathological accumulations of amyloid.

But in up to 20 percent of cases, especially at early stages of the disease, the methods show different results. These differences can have implications for the patient for early diagnosis and treatment.

Now, researchers at Karolinska Institutet and Vita-Salute San Raffaele University in Milano have identified two alternative pathways for the development of amyloid pathology in Alzheimer's disease.

The results are based on PET imaging and CSF analyses in 867 participants, including patients with mild cognitive impairment, Alzheimer's dementia and healthy controls. For two years, the amyloid accumulation in a subset of nearly 300 participants had been documented with both a PET camera and CSF analysis.

The results show that pathological changes in some individuals are first detected in the brain with a PET camera, and in other individuals first with CSF analysis. In the latter group, the researchers also saw a higher incidence of Alzheimer's genetic risk factor and faster accumulation of amyloid plaques in the brain compared to the former group.

According to the researchers, the results reveal two different groups of patients, with different genetics and speed of amyloid plaque accumulation in the brain.

"The results may be important as amyloid biomarkers play a significant role as early diagnostic markers for clinical diagnosis. Today, CSF-analysis and PET are considered equivalent to determine the degree of amyloid accumulation, but the study indicates that the two methods should rather be seen as complementary to each other," says first author Arianna Sala, currently a post-doctoral fellow at the University of Liège, Belgium and Technical University of Munich, Germany.

"The differences in the results for biomarkers in the brain and CSF provide unique biological information and the opportunity for earlier and more individualized diagnosis and treatment for Alzheimer's disease in the future. The results may also be important for the design of clinical trials of new drugs against amyloid accumulation in the brain," says last author Elena Rodriguez-Vieitez, senior researcher at the Department of Neurobiology, Caring Sciences and Society, Karolinska Institutet.
-end-
The study was funded by the European Union Innovative Medicines Initiative AMYPAD, the Alzheimer's Foundation, the Brain Foundation, the Dementia Foundation, the Foundation for Strategic Research (SSF), the Swedish Research Council, the Ake Wiberg Foundation and Region Stockholm. There are no reported conflicts of interest.

Publication: "Longitudinal pathways of cerebrospinal fluid and positron emission tomography biomarkers of amyloid-β positivity". Arianna Sala, Agneta Nordberg, Elena Rodriguez-Vieitez. Molecular Psychiatry, online December 11, 2020, doi: 10.1038/s41380-020-00950-w.

Karolinska Institutet

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.