Sediment Study 'Good News' For Quake-Prone Southern California

December 10, 1997

The Los Angeles basin's sediments seem to lessen the ground motion that threatens single- story and low-rise buildings in a severe earthquake, a new study of data from the 1994 Northridge quake has revealed. The study was conducted through the National Science Foundation (NSF)'s Southern California Earthquake Center.

University of Southern California seismologist Edward H. Field says that his team's research, which is published in this week's issue of the journal Nature, is "good news" for Southern California.

"This work is an important step in our efforts to mitigate the damage caused by earthquakes," says James Whitcomb, program director in NSF's division of earth sciences, which funds SCEC. "Now, we must categorize the geological conditions and building types for which this phenomenon holds true. That's the cutting edge of future earthquake research."

Geologically, the Los Angeles basin is a valley filled with debris (sediments) that eroded from neighboring mountains over hundreds of thousands of years, Field notes. For more than a century, scientists have known that such sediments usually amplify ground motion in earthquakes. But seismologists and engineers disagree as to whether the degree of amplification will change as the level of shaking increases.

Do all sediment-filled valleys shake like a bowl of jelly in larger earthquakes, as they do during smaller quakes? Or do some behave like a bowl of sand in which seismic energy is "absorbed" as the grains rub together, effectively reducing ground motion?

Based on laboratory studies of sediments, engineers have argued for the bowl-of-sand theory and have designed structures on the assumption that amplification factors go down as the level of shaking increases - that is, that the shaking effects of a stronger earthquake aren't boosted as much as those of a smaller quake. Seismologists, though, have traditionally argued for the bowl-of- jelly model. They have seen little evidence that sediment amplification is reduced, especially when the soil is of the stiff, dry variety found in the Los Angeles basin. They have therefore been concerned that some engineering designs may fail to account for the degree of seismic hazard that sediments actually pose.

The new study provides the first evidence based on large-scale measurements that the answer is closer to the engineering view than seismologists had thought. Sediment amplification in the Los Angeles basin would be significantly reduced during large earthquakes, the researchers found. Although the Nature paper takes a step toward settling the debate, the researchers believe more work is needed to assess whether current engineering practices adequately reflect the degree of seismic hazard posed by the local sediments.


Editors: Field will attend the meeting of the American Geophysical Union in San Francisco during the week of publication. He may be reached at the Westin St. Francis Hotel at (415) 397-7000.

***NSF is an independent federal agency responsible for fundamental research in all fields of science and engineering, with an annual budget of about $3.3 billion. NSF funds reach all 50 states, through grants to more than 2,000 universities and institutions nationwide. NSF receives more than 50,000 requests for funding annually, including at least 30,000 new proposals.

National Science Foundation

Related Earthquakes Articles from Brightsurf:

AI detects hidden earthquakes
Tiny movements in Earth's outermost layer may provide a Rosetta Stone for deciphering the physics and warning signs of big quakes.

Undersea earthquakes shake up climate science
Sound generated by seismic events on the seabed can be used to determine the temperature of Earth's warming oceans.

New discovery could highlight areas where earthquakes are less likely to occur
Scientists from Cardiff University have discovered specific conditions that occur along the ocean floor where two tectonic plates are more likely to slowly creep past one another as opposed to drastically slipping and creating catastrophic earthquakes.

Does accelerated subduction precede great earthquakes?
A strange reversal of ground motion preceded two of the largest earthquakes in history.

Scientists get first look at cause of 'slow motion' earthquakes
An international team of scientists has for the first time identified the conditions deep below the Earth's surface that lead to the triggering of so-called 'slow motion' earthquakes.

Separations between earthquakes reveal clear patterns
So far, few studies have explored how the similarity between inter-earthquake times and distances is related to their separation from initial events.

How earthquakes deform gravity
Researchers at the German Research Centre for Geosciences GFZ in Potsdam have developed an algorithm that for the first time can describe a gravitational signal caused by earthquakes with high accuracy.

Bridge protection in catastrophic earthquakes
Bridges are the most vulnerable parts of a transport network when earthquakes occur, obstructing emergency response, search and rescue missions and aid delivery, increasing potential fatalities.

Earthquakes, chickens, and bugs, oh my!
Computer scientists at the University of California, Riverside have developed two algorithms that will improve earthquake monitoring and help farmers protect their crops from dangerous insects, or monitor the health of chickens and other animals.

Can a UNICORN outrun earthquakes?
A University of Tokyo Team transformed its UNICORN computing code into an AI-like algorithm to more quickly simulate tectonic plate deformation due to a phenomenon called a ''fault slip,'' a sudden shift that occurs at the plate boundary.

Read More: Earthquakes News and Earthquakes Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to