Study Associates Asteroid Or Comet Impact With Extinctions In Argentina

December 10, 1998

A new study shows that a previously unknown impact from an asteroid or comet coincides with the disappearance of 35 different types of ancient mammals and a flightless bird 3.3 million years ago. The impact may have directly caused the regional extinctions or triggered a climate change that led to the disappearance of the animals in what is now southeastern Argentina.

The findings may provide an opportunity for scientists to study the cause and effect of an event that wiped out animal life similar to species on Earth today.

"Unlike what impacts did to dinosaurs and other prehistoric creatures, this was not an event that led to global extinctions," said principal investigator Peter Schultz, professor of geological sciences at Brown University and an impact specialist. "We've found something linked to much more recent land history. The advantage to studying something this young is that you can really examine the forensics.

"This is a threshold event. It may have been small enough to cause regional damage and extinctions and may have triggered a climate change. El Niño or a volcanic eruption produces small tweaks to the climate compared to what one of these impacts can do." The cyclical cooling of the Earth's temperatures that began soon after the impact 3.3 million years ago continues today, he said.

The study is published in this week's Science magazine. Its co-authors are Argentinean scientists Marcelo Zarate and Cecilia Camilion; Willis Hames, an Auburn University geologist; and John King, a researcher in the Graduate School of Oceanography at the University of Rhode Island. The team studied an 18-mile-long narrow layer of greenish glass and red brick-like materials found in the high ocean cliffs of southeastern Argentina. Called escoria, the glass had puzzled scientists since it was first described in 1865. [Editors: A color image of the escoria is available at the News Bureau's web site.]

The glass and surrounding red-baked powder bear the signatures of a powerful ancient blast archived in the thick Argentine dust, say the researchers. They describe a half-dozen physical signs, from the twisted and folded shapes of the glass to its isolation from other potential sources such as volcanoes. Chemical analysis of the glass produces all the right impact signatures: unusually high levels of magnesium oxide and calcium oxide, significant amounts of iridium and chromium, and only the tiniest traces of water.

The study shows the glass occurs just below a layer of dusty deposits containing fossil evidence of a 3-million-year-old disappearance of 36 local types of animals. Extinct species include large armadillo-like creatures, ground sloths, hoofed groups of related mammals and a flightless carnivorous bird. Other fauna later appeared in their place.

By using a laser fusion technique to measure heavy to light argon atoms in the glass, and by comparing the magnetic readings of the glass layer to published records of magnetic-field changes over the eons, the researchers date the glass as 3.3 million years old, just prior to the extinctions.

Using research by other scientists that compared heavy to light oxygen isotopes in sediment cores from the nearby ocean floor, Schultz and colleagues offer evidence of a sudden drop in both atmospheric and water temperatures almost 3.3 million years ago. The finding indicates that a climate change occurred shortly after the glass appeared and just prior to the animal life turnover.

"This research is analogous to comparing several time clocks," said Schultz. "We compared a clock in the glass to a clock in the soil to a clock in the deep-sea cores. This told us the conditions at the time. We were surprised to find that the appearance of the glasses and the turnover of the fauna coincided with a temperature drop."

The research began as a simple project to determine the origin and age of the escorias. However, the work identified a series of coincidences that strongly suggest a major, ecosystem-altering event took place relatively recently, geologically speaking, he said.
-end-


Brown University

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.