Blocking enzyme imprisons malaria parasites

December 11, 2000

December 12, 2000--Researchers have found a way to prevent infectious malaria particles from bursting out of their protective sacs by blocking the activity of a protein-snipping enzyme, called a protease. The research suggests that it might be possible to treat malaria infection with protease inhibitors to keep the infectious particles imprisoned until they deteriorate.

In an article published in the December 12, 2000, issue of Proceedings of the National Academy of Sciences, Howard Hughes Medical Institute investigator Daniel E. Goldberg and colleagues at Washington University School of Medicine reported that their experiments illuminate a little-understood but important infective mechanism used by malaria parasites.

Malaria afflicts as many as 500 million people worldwide and is responsible for the death of two million children each year. Yet, says Goldberg, remarkably little is known about the process by which malaria parasites, in the form of merozoites, exit from red blood cells, which are the initial sites of infection. "It was known, for example, that some proteases may be involved and that the merozoites come out in a concerted fashion. But that was about it," Goldberg said.

Researchers knew that when malaria parasites infect a red blood cell, they envelope themselves in a portion of the blood cell membrane, which forms a protective sac called the parasitophorous vacuolar membrane (PVM.) However, it was not known what, if any, role the PVM played once the malaria parasite had reproduced to form clusters of infectious merozoites that exit from the cell.

In their experiments, Goldberg and his colleagues treated cultures of red blood cells infected with malaria parasites with a drug called E64 that specifically blocks the activity of certain proteases.

Detailed studies of the protease-inhibitor-treated cultures revealed that clusters of merozoites are encapsulated in transparent membranes following treatment with E64. To determine the origin of these membranes, the scientists treated the cultures with fluorescent-tagged antibodies that attached to blood cell proteins or to PVM proteins. These studies revealed that the membranes that enclosed the merozoite clusters came from the PVM.

"Thus, we concluded that this protease inhibitor treatment seemed to block the parasites at a particular stage in the exit process," said Goldberg. "In the E64-treated cultures, we found that the merozoites could still get out of the red blood cell, but they couldn't get out of the sacs. This told us that there are two steps in the process by which these parasites exit the host red blood cell, and that the second step requires a protease," he said.

The researchers conducted additional experiments to determine whether the imprisoned merozoites were still viable--an important distinction if the discovery is to be used for further research, said Goldberg. They found that once the protease inhibitor was removed from the culture and the merozoites were allowed to infect red blood cells, the malaria particles showed the same ability to infect as untreated merozoites. Goldberg and his colleagues also isolated the merozoite PVMs themselves and showed that the PVMs also yielded viable, infectious merozoites.

"These findings mean that use of protease inhibitors to prevent rupture of PVMs provides us with an excellent technique for isolating large numbers of infectious merozoites to study the process of invasion, the merozoites themselves, and the membrane around the parasites," said Goldberg.

Howard Hughes Medical Institute

Related Parasites Articles from Brightsurf:

When malaria parasites trick liver cells to let themselves in
A new study led by Maria Manuel Mota, group leader at Instituto de Medicina Molecular, now shows that malaria parasites secrete the protein EXP2 that is required for their entry into hepatocytes.

How deadly parasites 'glide' into human cells
A group of scientists led by EMBL Hamburg's Christian Löw provide insights into the molecular structure of proteins involved in the gliding movements through which the parasites causing malaria and toxoplasmosis invade human cells.

How malaria parasites withstand a fever's heat
The parasites that cause 200 million cases of malaria each year can withstand feverish temperatures that make their human hosts miserable.

New studies show how to save parasites and why it's important
An international group of scientists published a paper, Aug. 1, 2020, in a special edition of the journal Biological Conservation that lays out an ambitious global conservation plan for parasites.

More flowers and pollinator diversity could help protect bees from parasites
Having more flowers and maintaining diverse bee communities could help reduce the spread of bee parasites, according to a new study.

How Toxoplasma parasites glide so swiftly (video)
If you're a cat owner, you might have heard of Toxoplasma gondii, a protozoan that sometimes infects humans through contact with contaminated feces in litterboxes.

Parasites and the microbiome
In a study of ethnically diverse people from Cameroon, the presence of a parasite infection was closely linked to the make-up of the gastrointestinal microbiome, according to a research team led by Penn scientists.

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.

Feeding bluebirds helps fend off parasites
If you feed the birds in your backyard, you may be doing more than just making sure they have a source of food: you may be helping baby birds give parasites the boot.

Scientists discover how malaria parasites import sugar
Researchers at Stockholm University has established how sugar is taken up by the malaria parasite, a discovery with the potential to improve the development of antimalarial drugs.

Read More: Parasites News and Parasites Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.