Ability to smell food regulated by enzyme's interaction with RNA interference pathway

December 11, 2003

SALT LAKE CITY-Recent studies at the University of Utah suggest new ways of regulating the behaviors that allow us to smell food, learn, and remember.

Brenda L. Bass, Ph.D., professor of biochemistry at the U School of Medicine and a Howard Hughes Medical Institute investigator, and Leath A. Tonkin, a graduate student in her lab, published their findings in the Dec. 5 issue of the journal Science.

With the help of a tiny worm, C. elegans, Bass and Tonkin discovered that ADAR, an enzyme abundant in the nervous system, interacts with a pathway called RNAi (RNA interference). When it's functioning properly, RNAi, which was discovered in 1998, ensures that certain genes are turned on in some cells and turned off in others.

C. elegans that have mutations in their ADAR genes have behavioral defects, according to Bass. For example, mutant worms that lack ADARs have trouble finding food. When placed near food a normal worm crawls quickly to the food but an ADAR mutant may crawl in a completely different direction. To see if ADAR functions were related to the RNAi pathway, Bass and Tonkin made strains of the worm with mutations in both the ADAR genes and in genes required for RNAi.

"Remarkably, in these worms, the behavioral defects associated with the mutations in the ADAR genes were eliminated," Bass said. "This suggests that ADARs intersect with the RNAi pathway and that many of the behavioral defects of ADAR mutants are caused by aberrant RNAi."

RNA is a nucleic acid that is an essential component of all cells. In a process called transcription, the information in our DNA genes is passed to RNA. A second process called translation allows the information in RNA to be turned into protein. Typically, one gene has the information for one protein, but with the help of "editing" enzymes such as ADAR, multiple proteins can be made from one gene.

ADARs enable RNA to produce different proteins by altering the sequence of nucleotides that contain the information for making a protein. That had been considered ADARs' most important function, but the research of Bass and Tonkin shows that ADARs perform other jobs as well.
-end-
For information contact:

Brenda L. Bass, Ph.D., 801-581-4884, bbass@howard.genetics.utah.edu

Or

Phil Sahm, U of U Health Sciences Center Office of Public Affairs, 801-581-7387

University of Utah Health Sciences

Related Protein Articles from Brightsurf:

The protein dress of a neuron
New method marks proteins and reveals the receptors in which neurons are dressed

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Diets high in protein, particularly plant protein, linked to lower risk of death
Diets high in protein, particularly plant protein, are associated with a lower risk of death from any cause, finds an analysis of the latest evidence published by The BMJ today.

A new understanding of protein movement
A team of UD engineers has uncovered the role of surface diffusion in protein transport, which could aid biopharmaceutical processing.

A new biotinylation enzyme for analyzing protein-protein interactions
Proteins play roles by interacting with various other proteins. Therefore, interaction analysis is an indispensable technique for studying the function of proteins.

Substituting the next-best protein
Children born with Duchenne muscular dystrophy have a mutation in the X-chromosome gene that would normally code for dystrophin, a protein that provides structural integrity to skeletal muscles.

A direct protein-to-protein binding couples cell survival to cell proliferation
The regulators of apoptosis watch over cell replication and the decision to enter the cell cycle.

A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.

Resurrecting ancient protein partners reveals origin of protein regulation
After reconstructing the ancient forms of two cellular proteins, scientists discovered the earliest known instance of a complex form of protein regulation.

Sensing protein wellbeing
The folding state of the proteins in live cells often reflect the cell's general health.

Read More: Protein News and Protein Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.