Pioneers in field of functional genomics work toward gene therapy for vision defects

December 11, 2006

"Primates and humans have three photoreceptors and can only see four basic colors, red, green, blue and yellow," says Jay Neitz, Ph.D. "Birds, fish and reptiles have four photoreceptors, allowing them to see things we cannot. They must see an entire dimension of color, including ultraviolet, infrared and all the combinations thereof, which we miss."

He is the R.D. and Linda Peters Professor in Ophthalmology at the Medical College. Maureen E. Neitz, Ph.D., is the Richard O. Schultz/Ruth Works Professor in Ophthalmology Research.

Two of the world's leading color vision researchers, the Neitzes are also pioneers in the field of functional genomics. Their studies of human color vision have not only identified the genes responsible for colorblindness, but also defined one of the first examples of a nervous system defect for which a person's DNA can predict both the occurrence and the severity of the disorder.

"This has been an important breakthrough, because as scientists strive to understand the genetic basis of human disease, more than merely revealing the presence of a genetic defect, it is also important to forecast the severity of the impairment," says Dr. Maureen Neitz.

They are currently studying gene therapy at the Froedtert & The Medical College of Wisconsin Eye Institute to evaluate the plasticity of the adult human visual system. Gene therapy has been demonstrated to correct deficits in the retina, but the major unanswered question is whether the brain can interpret new information it receives from the therapeutically-treated retina to restore vision. For humans to migrate around objects in their world requires that information about objects be transmitted from the retina to the brain, and that the brain recreate an image of the world.

Their color vision research has also provided them with unique opportunities to discover the steps in the causal chain from the gene, to protein function, to neural signal. They are applying these lessons to other genetic defects that cause visual impairment.

"We anticipate that our studies of the basic mechanisms controlling gene expression in the retina, and the structure/functional relationships among proteins involved in signal transduction, may lead to development of new methods for early diagnosis of retinal disorders, and ultimately extend our knowledge of the role genes play in construction of the nervous system," she says.
-end-
The Neitzes are currently conducting several research studies involving human subjects including a study of color vision and a study of how eye growth is controlled to cause nearsightedness. To learn more about these studies, interested participants can call (414) 456 2056.

Medical College of Wisconsin

Related Gene Therapy Articles from Brightsurf:

Risk of AAV mobilization in gene therapy
New data highlight safety concerns for the replication of recombinant adeno-associated viral (rAAV) vectors commonly used in gene therapy.

Discovery challenges the foundations of gene therapy
An article published today in Science Translational Medicine by scientists from Children's Medical Research Institute has challenged one of the foundations of the gene therapy field and will help to improve strategies for treating serious genetic disorders of the liver.

Gene therapy: Novel targets come into view
Retinitis pigmentosa is the most prevalent form of congenital blindness.

Gene therapy targets inner retina to combat blindness
Batten disease is a group of fatal, inherited lysosomal storage disorders that predominantly affect children.

New Human Gene Therapy editorial: Concern following gene therapy adverse events
Response to the recent report of the deaths of two children receiving high doses of a gene therapy vector (AAV8) in a Phase I trial for X-linked myotubular myopathy (MTM).

Restoring vision by gene therapy
Latest scientific findings give hope for people with incurable retinal degeneration.

Gene therapy/gene editing combo could offer hope for some genetic disorders
A hybrid approach that combines elements of gene therapy with gene editing converted an experimental model of a rare genetic disease into a milder form, significantly enhancing survival, shows a multi-institutional study led by the University of Pennsylvania and Children's National Hospital in Washington, D.C.

New technology allows control of gene therapy doses
Scientists at Scripps Research in Jupiter have developed a special molecular switch that could be embedded into gene therapies to allow doctors to control dosing.

Gene therapy: Development of new DNA transporters
Scientists at the Institute of Pharmacy at Martin Luther University Halle-Wittenberg (MLU) have developed new delivery vehicles for future gene therapies.

Gene therapy promotes nerve regeneration
Researchers from the Netherlands Institute for Neuroscience and the Leiden University Medical Center have shown that treatment using gene therapy leads to a faster recovery after nerve damage.

Read More: Gene Therapy News and Gene Therapy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.