Climate change affecting Earth's outermost atmosphere

December 11, 2006

BOULDER -- Carbon dioxide emissions from the burning of fossil fuels will produce a 3 percent reduction in the density of Earth's outermost atmosphere by 2017, according to a team of scientists from the National Center for Atmospheric Research (NCAR) and The Pennsylvania State University (PSU). The research, which appears in the latest issue of Geophysical Research Letters, will be presented today at the annual meeting of the American Geophysical Union.

"We're seeing climate change manifest itself in the upper as well as lower atmosphere," says NCAR scientist Stan Solomon, a co-author of the study. "This shows the far-ranging impacts of greenhouse gas emissions."

The research team includes Solomon, Liying Qian, and Ray Roble of NCAR's High Altitude Observatory; and Tim Kane of PSU. The study was supported by NASA's Living With a Star program and by the National Science Foundation, NCAR's primary sponsor.

Lower density in the thermosphere, which is the highest layer of the atmosphere, reduces the drag on satellites in low Earth orbit, allowing them to stay airborne longer. Forecasts of upper-level air density could help NASA and other agencies plan the fuel needs and timing of satellite launches more precisely, potentially saving millions of dollars.

-----Confirming and extending a prediction-----

Recent observations by scientists tracking satellite orbits have shown that the thermosphere, which begins about 60 miles above Earth and extends up to 400 miles, is beginning to become less dense. This confirms a prediction made at NCAR in 1989 by Roble and Robert Dickinson (now at the Georgia Institute of Technology) that the thermosphere will cool and contract because of increasing carbon dioxide levels. The new study is the first to analyze whether the observed change will become more pronounced over the next decade.

-----Why the cooling is a sign of global warming-----

Carbon dioxide cools the thermosphere, even though it acts to warm the atmosphere near the Earth's surface (the troposphere). This paradox occurs because the atmosphere thins with height. Near the Earth's surface, carbon dioxide absorbs radiation escaping Earth, but before the gas molecules can radiate the energy to space, frequent collisions with other molecules in the dense lower atmosphere force the carbon dioxide to release energy as heat, thus warming the air. In the much thinner thermosphere, a carbon dioxide molecule absorbs energy when it collides with an oxygen molecule, but there is ample time for it to radiate energy to space before another collision occurs. The result is a cooling effect. As it cools, the thermosphere settles, so that the density at a given height is reduced.

-----The role of the solar cycle-----

Also affecting the thermosphere is the 11-year cycle of solar activity. During the active phase of the cycle, ultraviolet light and energetic particles from the Sun increase, producing a warming and expansion of the upper atmosphere. When solar activity wanes, the thermosphere settles and cools.

In order to analyze recent solar cycles and peer into the future, the NCAR-PSU team used a computer model of the upper atmosphere that incorporates the solar cycle as well as the gradual increase of carbon dioxide due to human activities. The team also used a prediction for the next solar cycle, issued by NCAR scientist Mausumi Dikpati and colleagues, that calls for a stronger-than-usual solar cycle over the next decade. The model showed a decrease in thermospheric density from 1970 to 2000 of 1.7 percent per decade, or about 5 percent overall, which agrees with observations. The team found that the decrease was about three to four times more rapid during solar minimum than solar maximum.

-----Impacts on satellites-----

Many satellites, including the International Space Station and the Hubble Space Telescope, follow a low Earth orbit at altitudes close to 300 miles. Over time, the upper atmosphere drags the satellites closer to Earth. The amount of drag depends on the density of the thermosphere, which is why satellite planners need better predictions of how the thermosphere changes.

"Satellite operators noticed the solar cycle changes in density at the very beginning of the space age," says Solomon. "We are now able to reproduce the changes using the NCAR models and extend them into the next solar cycle."

-----Participating in the press conference/teleconference-----

Researchers will speak at a press conference about this research at the American Geophysical Union's fall meeting in San Francisco. The press conference is on Monday, December 11, at 9:00 a.m. Pacific Time/Noon Eastern Time at the Moscone Convention Center, Room 232 Moscone South.

Reporters who cannot attend may listen to all AGU press conferences and ask questions. In the United States and Canada, call toll-free: (888) 481-3032. From the rest of the world call (not toll-free): 1-617-801-9600.

When prompted, enter this code: 115139

The code is the same for all press conferences, but you must place a new call for each one, even in consecutive hours.

-----About the paper-----

Title: "Calculated and observed climate change in the thermosphere, and a prediction for solar cycle 24"

Authors: L. Qian, R.G. Roble, S.C. Solomon, and T.J. Kane

Publication: Geophysical Research Letters, 33, L23705, doi:10.1029/2006GL027185 (2006)

Find this press release and images on the Web at http://www.ucar.edu/news/releases
-end-
To receive NCAR and UCAR press releases via e-mail or to unsubscribe, send name, title, affiliation, postal address, fax, and phone number to yvonnem@ucar.edu.

NOTES TO EDITORS:

--Press Conference and Teleconference
There will be a press conference at the AGU meeting in San Francisco about this research on Monday, December 11, at 9:00 a.m. Pacific Time. Reporters not at the meeting can call in and ask questions. See the end of this release for details.

--Visuals Available
An animation, a video narration by Stan Solomon, and still images are available at http://www.ucar.edu/news/releases/2006/thermospherevisuals.shtml

The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under primary sponsorship by the National Science Foundation. Opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

National Center for Atmospheric Research/University Corporation for Atmospheric Research

Related Atmosphere Articles from Brightsurf:

ALMA shows volcanic impact on Io's atmosphere
New radio images from ALMA show for the first time the direct effect of volcanic activity on the atmosphere of Jupiter's moon Io.

New study detects ringing of the global atmosphere
A ringing bell vibrates simultaneously at a low-pitched fundamental tone and at many higher-pitched overtones, producing a pleasant musical sound. A recent study, just published in the Journal of the Atmospheric Sciences by scientists at Kyoto University and the University of Hawai'i at Mānoa, shows that the Earth's entire atmosphere vibrates in an analogous manner, in a striking confirmation of theories developed by physicists over the last two centuries.

Estuaries are warming at twice the rate of oceans and atmosphere
A 12-year study of 166 estuaries in south-east Australia shows that the waters of lakes, creeks, rivers and lagoons increased 2.16 degrees in temperature and increased acidity.

What makes Saturn's atmosphere so hot
New analysis of data from NASA's Cassini spacecraft found that electric currents, triggered by interactions between solar winds and charged particles from Saturn's moons, spark the auroras and heat the planet's upper atmosphere.

Galactic cosmic rays affect Titan's atmosphere
Planetary scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) revealed the secrets of the atmosphere of Titan, the largest moon of Saturn.

Physics: An ultrafast glimpse of the photochemistry of the atmosphere
Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

Using lasers to visualize molecular mysteries in our atmosphere
Molecular interactions between gases and liquids underpin much of our lives, but difficulties in measuring gas-liquid collisions have so far prevented the fundamental exploration of these processes.

The atmosphere of a new ultra hot Jupiter is analyzed
The combination of observations made with the CARMENES spectrograph on the 3.5m telescope at Calar Alto Observatory (Almería), and the HARPS-N spectrograph on the National Galileo Telescope (TNG) at the Roque de los Muchachos Observatory (Garafía, La Palma) has enabled a team from the Instituto de Astrofísica de Canarias (IAC) and from the University of La Laguna (ULL) to reveal new details about this extrasolar planet, which has a surface temperature of around 2000 K.

An exoplanet loses its atmosphere in the form of a tail
A new study, led by scientists from the Instituto de Astrofísica de Canarias (IAC), reveals that the giant exoplanet WASP-69b carries a comet-like tail made up of helium particles escaping from its gravitational field propelled by the ultraviolet radiation of its star.

Iron and titanium in the atmosphere of an exoplanet
Exoplanets can orbit close to their host star. When the host star is much hotter than our sun, then the exoplanet becomes as hot as a star.

Read More: Atmosphere News and Atmosphere Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.