NASA diagnoses Tropical Storm Gert's growth spurt

December 11, 2006

Scientists want to know how a tropical cyclone develops from a weak tropical depression into a tropical storm. To answer that question, NASA and other scientists flew over and through storms in 2005 and obtained and combined data that let them see the storm in four dimensions.

They found that a burst of rapidly rising air (convection), a weak wind shear (winds that vary with height that can blow a storm apart), and the ocean surface temperature all played an important role in Tropical Storm Gert's origination and strengthening.

In July 2005, during the Tropical Cloud Systems and Processes (TCSP) mission field experiments, scientists from NASA, the National Oceanic and Atmospheric Administration (NOAA) and universities boarded hurricane research planes and flew over and into Tropical Storm Gert near eastern Mexico. From the aircraft they dropped sensors called "dropsondes" into the storm. They also observed Gert by satellite and ran computer models with the data they gathered from the dropsondes and satellites to re-create the storm inside and outside.

Zhaoxia Pu, assistant professor in the Department of Meteorology at the University of Utah, led the study. "By recreating the storm on a computer model as a four-dimensional structure -- height, width, depth and over time -- it will help us understand the mechanisms of storm development," Pu said.

Xuanli Li, a graduate student at University of Utah, and Pu conducted a study to identify the factors that affect the storm's development.

In addition to the dropsonde information, they used satellite data from NASA's QuikSCAT satellite for winds; the Tropical Rainfall Measuring Mission (TRMM) satellite data on precipitation; and the National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite (GOES) for movement of the atmosphere, into a computer model. Their purpose was to produce a very detailed view in both space and time of the evolution of tropical storm Gert throughout its life cycle.

Tropical storms and hurricanes travel over large areas during their life cycle and are influenced by many factors. With the computer simulation of Gert, scientists are getting a much more detailed look at what may lead to those changes, whether it's a change in air temperature or the direction or strength winds are blowing at different levels of the atmosphere.

"By combining the satellite and dropsonde data and creating high-resolution computer model simulations, we were able to reveal the major structural features as they evolved in Gert," said Li. "The computer simulation accurately captured the rapid increase in the upward motion of the air (convection) inside Gert when the storm strengthened from a tropical depression to a tropical storm." said Li.

"We expect that our understanding of tropical storm development will be improved through these types of comprehensive datasets obtained from field observations and high-resolution computer model analysis," said Edward Zipser, a co-author and lead scientist on NASA's African Monsoon Multidisciplinary Activities (NAMMA) 2006 Atlantic Ocean hurricane mission.

Gert began as a low pressure area that formed in the Gulf of Honduras just east of Chetumal, Mexico on July 22. The low quickly moved inland over Yucatan and organized into a tropical depression on July 23. The next day, the depression strengthened into Tropical Storm Gert. The computer model re-created Gert's life cycle from July 22 to July 25.
-end-
For images and more information, visit on the Web: http://www.nasa.gov/centers/goddard/news/topstory/2006/gert_evolution.html

Writer: Rob Gutro, Goddard Space Flight Center

NASA/Goddard Space Flight Center

Related Tropical Storm Articles from Brightsurf:

NASA finds powerful storm's around Tropical Storm Cristina's center
A low-pressure area strengthened quickly and became Tropical Storm Cristina in the Eastern Pacific Ocean and infrared imagery from NASA revealed the powerful thunderstorms fueling that intensification.

NASA satellite gives a hello to tropical storm Dolly
During the morning of June 23, the fourth system in the Northern Atlantic Ocean was a subtropical depression.

NASA follows Tropical Storm Nuri's path
An animation of four days of imagery from NASA's Terra satellite showed the progression and landfall of Tropical Storm Nuri.

NASA finds an elongated Phanfone now a tropical storm
NASA-NOAA's Suomi NPP satellite provided a visible image of Phanfone as it continues moving through the South China Sea.

Tropical Storm Krosa gets a comma shape
Tropical Storm Krosa continued on its journey northward in the Northwestern Pacific Ocean when NOAA's NOAA-20 polar orbiting satellite passed overhead and captured a visible image of the strengthening storm in a classic tropical cyclone shape.

Satellite shows Tropical Storm Flossie holding up
Satellite imagery showed that Tropical Storm Flossie's structure didn't change much overnight from July 31 to August 1.

NASA tropical storm Erick strengthening
Infrared imagery from NASA's Aqua satellite revealed a stronger Tropical Storm Erick in the Eastern Pacific Ocean.

GPM satellite provides a 3D look at Tropical Storm Barry
The Global Precipitation Measurement mission or GPM core satellite provided a couple of views of Tropical Storm Barry that showed its cloud heights and rainfall rates.

NASA looks at Tropical Storm Funani's rainfall
Tropical Storm Funani (formerly classified as 12S) continued to affect Rodrigues Island in the South Pacific Ocean when the GPM satellite passed overhead and analyzed its rainfall.

NASA sees Tropical Storm Man-yi approaching typhoon strength Tropical Storm Man-Yi con
Tropical Storm Man-Yi continued to strengthen in the Northwestern Pacific Ocean as NASA-NOAA's Suomi NPP satellite provided a visible image of the storm.

Read More: Tropical Storm News and Tropical Storm Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.