Gas on your mind

December 11, 2006

Scientists at the University of Leicester are to gain a greater insight into the workings of the human mind...through the study of a snail's brain.

The research may lead to a greater understanding of the development of the nervous system and the processes that control nerve cell regeneration following injury. Researchers received funding of £322,299 from the BBSRC (Biotechnology and Biological Sciences Research Council) for the study.

The research project, led by Dr Volko Straub, a Research Councils UK fellow in the University's Department of Cell Physiology and Pharmacology, may also provide new insights why nitric oxide plays such an important role in many forms of learning.

Dr Straub commented: "The gas nitric oxide has two faces. It can be highly toxic and kill. However, it is also found naturally in the brain where it is used by nerve cells to communicate with each other. So, whilst it can be poisonous, the body also uses it beneficially as an internal signal."

"During brain development, nitric oxide can promote the growth of nerve cells and the formation of connections between nerve cells. Learning also triggers the formation of new connections between nerve cells and in many cases requires nitric oxide."

Despite the recognition of the importance of nitric oxide for the formation of nerve cell connections, scientists know little about the mechanisms. The Leicester BBSRC-funded project will study directly the relationship between the effects of nitric oxide on the growth of nerve cells and the formation of nerve cell connections.

Dr Straub explained: "Studying these processes in higher animals is complicated by the complexity of their nervous system. Fortunately, evolution has been very conservative. So, we decided to use the nervous system of the common pond snail, which is considerably less complex than the nervous system of higher animals such as mice, as a model system.

"In the snail, individual nerve cells are relatively large and easily identifiable. They are accessible for experimental manipulations. Snail neurons can also be isolated from the nervous system and maintained in cell culture, where they grow and form functional connections. Importantly, the basic processes and factors that control the growth of nerve cells and the formation of functional connections are highly conserved in all animals."

The results of the project will show what effects nitric oxide has on nerve cell growth and on the formation of functional connections. In a broader context, the results will contribute to a better understanding of the factors that control nerve cell growth and the formation of functional connections.
-end-
Note to editors: Further information is available from Dr Volko Straub, RCUK Fellow, Department of Cell Physiology and Pharmacology, University of Leicester.

University of Leicester

Related Nerve Cells Articles from Brightsurf:

Nerve cells let others "listen in"
How many ''listeners'' a nerve cell has in the brain is strictly regulated.

Nerve cells with energy saving program
Thanks to a metabolic adjustment, the cells can remain functional despite damage to the mitochondria.

Why developing nerve cells can take a wrong turn
Loss of ubiquitin-conjugating enzyme leads to impediment in growth of nerve cells / Link found between cellular machineries of protein degradation and regulation of the epigenetic landscape in human embryonic stem cells

Unique fingerprint: What makes nerve cells unmistakable?
Protein variations that result from the process of alternative splicing control the identity and function of nerve cells in the brain.

Ragweed compounds could protect nerve cells from Alzheimer's
As spring arrives in the northern hemisphere, many people are cursing ragweed, a primary culprit in seasonal allergies.

Fooling nerve cells into acting normal
In a new study, scientists at the University of Missouri have discovered that a neuron's own electrical signal, or voltage, can indicate whether the neuron is functioning normally.

How nerve cells control misfolded proteins
Researchers have identified a protein complex that marks misfolded proteins, stops them from interacting with other proteins in the cell and directs them towards disposal.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Research confirms nerve cells made from skin cells are a valid lab model for studying disease
Researchers from the Salk Institute, along with collaborators at Stanford University and Baylor College of Medicine, have shown that cells from mice that have been induced to grow into nerve cells using a previously published method have molecular signatures matching neurons that developed naturally in the brain.

Bees can count with just four nerve cells in their brains
Bees can solve seemingly clever counting tasks with very small numbers of nerve cells in their brains, according to researchers at Queen Mary University of London.

Read More: Nerve Cells News and Nerve Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.