New technology makes clinical research more precise

December 11, 2006

Ghent, Belgium -- The Flanders Interuniversity Institute for Biotechnology (VIB) and AlgoNomics have joined forces to develop a technology that verifies whether certain proteins induce an immune response in humans. The collaboration between VIB and AlgoNomics has yielded a biological test that supplements the current computer simulations. The additional data enable a more precise determination of the immune response. This knowledge is important for the development of new medicines, because it indicates that a new therapeutic substance is ready to be tested on humans.

T-cells, essential agents of our immune system
The immune system is our defense against foreign intruders, such as viruses and bacteria. It reacts against everything that it recognizes as 'foreign to the body' - but, therefore, it might also react against certain substances that researchers want to develop into therapeutic drugs. An important trigger of the immune system's response is the activation of T-cells, a particular type of white blood cell. The T-cells produce cytokines, substances that signal the other cells of the immune system to take action.

Developing therapeutic proteins
In the development of new therapeutic proteins, it is extremely important to know whether or not the proteins induce an immune response. When you suspect that a certain substance has a therapeutic effect, it must not be destroyed by your immune system, or induce other immune responses, because you want the substance to be able to do its beneficial work.

On the other hand, when developing a vaccine, you do want it to induce an immune response - that is, a reaction that does not make you sick but that protects you against future contact with the disease that the vaccine combats.

Epibase®, an 'in silico' test
For quite some time now, AlgoNomics has been offering Epibase® to companies that are developing therapeutic proteins and that want to know whether their product induces an immune response. On the basis of a sophisticated computer program, Epibase® can predict whether or not a particular protein will trigger the activation of T-cells. The technology can do this for all proteins, whether they originate from humans or from another biological source, such as a virus or a cancer cell. The marvelous thing about Epibase® is that it can also do this for proteins for which little or no experimental data are available. Other technologies require at least a minimum of data to predict whether a substance induces an immune response or not. Epibase® has already been used for the development of a variety of therapeutic proteins and is currently the biotech industry standard. In contrast to other 'in silico' platforms, Epibase® provides greater precision and can predict immune response in Asian and South American populations as well.

A more complete test
Upon the request of AlgoNomics, VIB scientists connected with Ghent University, under the direction of Johan Grooten, have designed a biological test that supplements the Epibase® assessments with certain experimental data. The test exposes blood cells - which include T-cells - to the proteins under study. If the proteins being investigated induce an immune response, the T-cells will become active and produce cytokines. In this new test, the activity of the T-cells is measured by determining the quantity of cytokines that are produced.

The new test allows scientists to examine a biological system to see whether a substance induces an immune response. For the step to a clinical phase (and thus tests on humans), the experimental and 'in silico' data are both needed to assess the risk of inducing an immune response. Thanks to the collaboration between VIB and AlgoNomics, it is now possible to generate all the data by means of a single test - an artful combination of 'in silico' and 'in vitro' work.
-end-


VIB (the Flanders Institute for Biotechnology)

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.