MIT researchers explain mystery of gravity fingers

December 11, 2008

Researchers at MIT recently found an elegant solution to a sticky scientific problem in basic fluid mechanics: why water doesn't soak into soil at an even rate, but instead forms what look like fingers of fluid flowing downward.

Scientists call these rivulets "gravity fingers," and the explanation for their formation has to do with the surface tension where the water--or any liquid--meets the soil (or other medium). Knowing how to account for this phenomenon mathematically will have wide-ranging impact on science problems and engineering applications, including the recovery of oil from reservoirs and the sequestration of carbon underground.

The solution reported in the Dec. 12 issue of Physical Review Letters involves borrowing a mathematical phrase, if you will, from the mathematical description of a similar problem, a solution both simple and elegant that had escaped the notice of many researchers in earlier attempts to describe the phenomenon.

Co-authors Luis Cueto-Felgueroso and Ruben Juanes of the MIT Department of Civil and Environmental Engineering discovered the solution while studying the larger question of how water displaces oil in underground reservoirs. (Petroleum engineers commonly flush oil reservoirs with water to enhance oil recovery.)

"Our paper addresses a long-standing issue in soil physics," said Cueto-Felgueroso. "Lab experiments of water infiltration into homogeneous, dry soil, repeatedly show the presence of preferential flow in the form of fingers. Yet, after several decades, the scientific community has been unable to capture this phenomenon using mathematical models."

"This was the type of problem that required someone from a different research discipline to take a look at it and come up with the solution," said Juanes, the ARCO Assistant Professor in Energy Studies. "Luis applied his expertise to a fluid mechanics problem in another medium--porous media flows--and quickly figured out the solution."

Cueto-Felgueroso, a post-doctoral associate who has previously worked primarily on airflow fluid mechanics problems, had a Eureka! moment when he realized that gravity fingers in soil (or clay or sand) look very similar to water flowing down a window pane, a fairly well-understood phenomenon. He and Juanes then pulled the mathematical explanation (think of it as a phrase of words or music) from the equation describing water on a window, and included that mathematical phrase in the equation describing liquid moving downward through soil.

After rigorous comparison of data produced by the new mathematical model with observed phenomena, the two realized they'd found the solution, a solution described by one scientist reviewing the paper in Physical Review Letters as "simple and elegant" and a "major breakthrough" in the field.

The Cueto-Felgueroso and Juanes solution also describes one aspect of the water-flowing-down-a-windowpane phenomenon that previously was not understood by scientists, who actually refer to this as "the flow of thin films": why water builds up at the tips of the fingers. Again, the answer has to with the surface tension. Before the water can flow down the film, it must build up enough energy to overcome the tension holding it in place.

So what was missing from earlier models of water moving downward through soil that made it appear to move as a steady, horizontal front, rather than in finger-like paths--even when the soil was homogenous in particle size and shape?

The missing mathematical phrase describes the surface tension of the entire finger of water, which may be several centimeters in width, as opposed to the tension existing at the micron-scale of pores between soil particles.

And that phrase will sound like music to the ears of physicists and engineers.
-end-


Massachusetts Institute of Technology, Department of Civil and Environmental Engineering

Related Surface Tension Articles from Brightsurf:

Growing interest in Moon resources could cause tension, scientists find
An international team of scientists led by the Center for Astrophysics | Harvard & Smithsonian, has identified a problem with the growing interest in extractable resources on the moon: there aren't enough of them to go around.

How cells use mechanical tension sensors to interact with their environment
In a painstaking experiment, scientists suspended a single protein filament between two microscopic beads.

What tiny surfing robots teach us about surface tension
Propelled by chemical changes in surface tension, microrobots surfing across fluid interfaces lead researchers to new ideas.

A novel salvinia-like slippery surface
Inspired by the hydrophobic leaves of Salvinia molesta and the slippery Nepenthes pitcher plants, a Salvinia-like slippery surface (SSS) consisting of protrusions with slippery heads was designed.

Surface tension, not gravity, drives viscous bubble collapse
By demonstrating that surface tension -- not gravity -- drives the collapse of surface bubbles in viscous liquids, a new study flips the previous understanding of how viscous bubbles pop on its head.

Tadpoles break the tension with bubble-sucking
When it comes to the smallest of creatures, the hydrogen bonds that hold water molecules together to form 'surface tension' lend enough strength to support their mass: think of insects that skip across the surface of water.

Finding connections at the surface
How and where receptors touch at the surface of a cell may influence the strength of neuronal connections and contribute to identifying better medical interventions for pain, cancer other diseases.

Scratching the surface of perovskites
Professor Yabing Qi and his team in the Energy Materials and Surface Sciences Unit at OIST, in collaboration with researchers at the University of Pittsburgh, USA, have, for the first time, characterized the structural defects that prompt the movement of ions, destabilizing the perovskite materials.

What makes the Earth's surface move?
Do tectonic plates move because of motion in the Earth's mantle, or is the mantle driven by the plates' movement?

Tension around autonomy increases family conflict at end of life
Conflict within families can be stressful and confusing, and it can lead to feelings of sadness.

Read More: Surface Tension News and Surface Tension Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.