What you give, might not always be received

December 11, 2008

A fundamental process in the transmission of genes from mother to child has been identified by researchers at the Montreal Neurological Institute, McGill University. The new study published in the December issue of the journal Nature Genetics identifies a mechanism that plays a key role in how mutations are transmitted from one generation to the next, providing unprecedented insight into metabolic diseases.

DNA that is only passed on from mothers to their children is stored in mitochondria, a compartment of cells which functions to supply energy to the body. Mutations in mitochondrial DNA (mtDNA) are important causes of over 40 known types of diseases and disorders which primarily affect brain and muscle function, some of which are severely debilitating, with symptoms including stroke, epilepsy, deafness and blindness. One very common mutation in Quebec causes maternally inherited blindness which has now been traced back to a Fille du Roi sent by the king of France in the 1600s to rectify the imbalance of gender in the newly colonized country.

MNI researchers have located a genetic bottleneck that determines the proportion of mutated mtDNA that mothers transmit to their offspring. This is important because there are many copies of mitochondria in cells and their distribution in tissues has a role in the severity and symptoms of the disease. Therefore knowing how mtDNA is transmitted is essential for the understanding and treatment of a range of maternally inherited diseases, and provides an opportunity for genetic counselling and treatment.

"The proportion of mutated DNA copies shifts rapidly and unpredictably from mother to child making it very hard to predict what proportion of mutated DNA will be passed on." says Dr. Eric Shoubridge, neuroscientist at the MNI and lead investigator in the study. "We now understand that this is partly due to the genetic bottleneck, in which just a small number of the original mtDNA copies from the mother are actually transmitted to the child. This bottleneck occurs during the development of eggs in affected females. Only a small set of the female's mtDNA is selected to replicate resulting in the individual producing eggs with a wide range of proportions of mutated mtDNA. These eggs give rise to offspring with proportions of mutated mtDNA that differ from each other and are different from the proportion of mutated mtDNA in the mother. This explains why the occurrence and severity of a disease from mutated mtDNA can vary in offspring of an affected mother. The identification and location of the genetic bottleneck in our study strengthens our knowledge of the rules and processes of transmission and improves our capacity for genetic counselling."

An important application of this study is in the prevention of the disease at the prenatal stage because therapies for sick patients are usually ineffective, and the diseases are often fatal. The study locates the bottleneck as occurring during the process of egg maturation in early postnatal life of a female, supporting the knowledge that mature oocytes or egg cells contain the full set of copies of mtDNA. This evidence makes possible pre-implantation genetic diagnosis, in which an oocyte is screened for harmful mutations prior to fertilization, for in-vitro fertilization for example. This prevents the transmission of harmful mutations and can avoid the termination of a pregnancy in cases where an embryo is carrying a fatal neurological disorder.
-end-
This research was supported by the Canadian Institutes of Health Research and the US National Institutes of Health. Eric Shoubridge is an International Scholar of the Howard Hughes Institute.

MNI:

October 2009 marks the 75th anniversary of the MNI. The MNI is a McGill University research and teaching institute, dedicated to the study of the nervous system and neurological diseases. Founded in 1934 by the renowned Dr. Wilder Penfield, the MNI is one of the world's largest institutes of its kind. MNI researchers are world leaders in cellular and molecular neuroscience, brain imaging, cognitive neuroscience and the study and treatment of epilepsy, multiple sclerosis and neuromuscular disorders. The MNI, with its clinical partner, the Montreal Neurological Hospital (MNH), part of the McGill University Health Centre, continues to integrate research, patient care and training, and is recognized as one of the premier neuroscience centres in the world. At the MNI, we believe in investing in the faculty, staff and students who conduct outstanding research, provide advanced, compassionate care of patients and who pave the way for the next generation of medical advances. Highly talented, motivated people are the engine that drives research - the key to progress in medical care. A new building, the North Wing Expansion, is currently under construction and will house state-of-the-art brain imaging facilities. Once the construction is completed and the new building is fully equipped, the scientific community focused on brain imaging research at the MNI will be without equivalent anywhere in the world.

Montreal Neurological Institute and Hospital

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.