Europa does the wave to generate heat

December 11, 2008

One of the moons in our solar system that scientists think has the potential to harbor life may have a far more dynamic ocean than previously thought.

If the moon Europa is tilted on its axis even slightly as it orbits the giant planet Jupiter, then Jupiter's gravitational pull could be creating powerful waves in Europa's ocean, according to Robert Tyler, an oceanographer with the University of Washington's Applied Physics Laboratory and author of a letter in the Dec. 11 Nature. As those waves dissipate, they would give off significant heat energy.

Depending on the amount of tilt, the heat generated by the ocean flow could be 100 to thousands of times greater than the heat generated by the flexing of Europa's rocky core in response to gravitational pull from Jupiter and the other moons circling that planet.

That's the current assumption - that oceans on moons are heated mainly by this flexing of their cores. In the case of Europa, it also has been thought that the thick ice covering its ocean probably generates some heat as two sides of cracked ice rub together in response to gravitational pull.

"If my work is correct then the heat source for Europa's ocean is the ocean itself rather than what's above or below it," Tyler says. "And we must form a new vision of the ocean habitat that involves strong ocean flow rather than the previously assumed sluggish flows."

Both are important considerations if exploratory missions are ever sent to Europa in search of life. Europa, which is slightly smaller than Earth's moon, is one of Jupiter's 63 moons. With surface temperatures as cold as minus 260 degrees Fahrenheit, Europa's surface is covered with a thick layer of ice. There is evidence of a liquid ocean beneath the ice and, if there is volcanic activity on the sea floor, this could be a recipe for generating microorganisms that live without sunlight, perhaps like the microorganisms found at hydrothermal vents and other places on Earth.

Many planets and moons are known to be tilted within their orbital plane. The Earth, for example, has an axial tilt of about 23 degrees. It's why the northern and southern hemispheres have different seasons, depending on whether they are tilted more toward or away from the sun.

Previous theoretical calculations expected Europa to have an axial tilt of at least 0.1 degrees. It hasn't been measured and could be bigger than this. But even at this minimum value the tidal flow on Europa using Tyler's new calculation is quite strong - some 10 centimeters a second - and enough to cause significant heating.

The new calculation differs from previous ones in that it allows a more realistic dynamic response of the ocean to the tidal forces.

His assumptions and calculations led him to say that he thinks this kind of wave action could be the dominant heat source in the oceans of Europa and other moons.

"But this proposal is a relatively new contender - so let's see how it does," he says. Tyler is the sole author of the letter in Nature. His work was supported by NASA's Outer Planets Research program.
-end-
For more information: Tyler is in Stockholm, Sweden, until Dec. 13, contact him via e-mail at tyler@apl.washington.edu

University of Washington

Related Solar System Articles from Brightsurf:

Ultraviolet shines light on origins of the solar system
In the search to discover the origins of our solar system, an international team of researchers, including planetary scientist and cosmochemist James Lyons of Arizona State University, has compared the composition of the sun to the composition of the most ancient materials that formed in our solar system: refractory inclusions in unmetamorphosed meteorites.

Second alignment plane of solar system discovered
A study of comet motions indicates that the Solar System has a second alignment plane.

Pressure runs high at edge of solar system
Out at the boundary of our solar system, pressure runs high.

What a dying star's ashes tell us about the birth of our solar system
A UA-led team of researchers discovered a dust grain forged in a stellar explosion before our solar system was born.

What scientists found after sifting through dust in the solar system
Two recent studies report discoveries of dust rings in the inner solar system: a dust ring at Mercury's orbit, and a group of never-before-detected asteroids co-orbiting with Venus, supplying the dust in Venus' orbit.

Discovered: The most-distant solar system object ever observed
A team of astronomers has discovered the most-distant body ever observed in our solar system.

Discovery of the first body in the Solar System with an extrasolar origin
Asteroid 2015 BZ509 is the very first object in the Solar System shown to have an extrasolar origin.

First interstellar immigrant discovered in the solar system
A new study has discovered the first known permanent immigrant to our solar system.

A star disturbed the comets of the solar system in prehistory
About 70,000 years ago, when the human species was already on Earth, a small reddish star approached our solar system and gravitationally disturbed comets and asteroids.

Scientists detect comets outside our solar system
Scientists from MIT and other institutions, working closely with amateur astronomers, have spotted the dusty tails of six exocomets -- comets outside our solar system -- orbiting a faint star 800 light years from Earth.

Read More: Solar System News and Solar System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.