Elusive 'hot' electrons captured in ultra-thin solar cells

December 11, 2009

CHESTNUT HILL, MA (12/11/2009) - Boston College researchers have observed the "hot electron" effect in a solar cell for the first time and successfully harvested the elusive charges using ultra-thin solar cells, opening a potential avenue to improved solar power efficiency, the authors report in the current online edition of Applied Physics Letters.

When light is captured in solar cells, it generates free electrons in a range of energy states. But in order to snare these charges, the electrons must reach the bottom of the conduction band. The problem has been that these highly energized "hot" electrons lose much of their energy to heat along the way.

Hot electrons have been observed in other devices, such as semiconductors. But their high kinetic energy can cause these electrons, also known as "hot carriers," to degrade a device. Researchers have long theorized about the benefits of harnessing hot electrons for solar power through so-called "3rd generation" devices.

By using ultrathin solar cells - a film fewer than 30 nanometers thick - the team developed a mechanism able to extract hot electrons in the moments before they cool - effectively opening a new "escape hatch" through which they typically don't travel, said co-author Michael J. Naughton, the Evelyn J. and Robert A. Ferris Professor of Physics at Boston College.

The team's success centered on minimizing the environment within which the electrons are able to escape, said Professor of Physics Krzysztof Kempa, lead author of the paper.

Kempa compared the challenge to trying to heat a swimming pool with a pot of boiling water. Drop the pot into the center of the pool and there would be no change in temperature at the edge because the heat would dissipate en route. But drop the pot into a sink filled with cold water and the heat would likely raise the temperature in the smaller area.

"We have shrunk the size of the solar cell by making it thin," Kempa said. "In doing so, we are bringing these hot electrons closer to the surface, so they can be collected more readily. These electrons have to be captured in less than a picosecond, which is less than one trillionth of a second."

The ultrathin cells demonstrated overall power conversion efficiency of approximately 3 percent using absorbers one fiftieth as thick as conventional cells. The team attributed the gains to the capture of hot electrons and an accompanying reduction in voltage-sapping heat. The researchers acknowledged the film's efficiency is limited by the negligible light collection of ultra-thin junctions. However, combining the film with better light-trapping technology - such as nanowire structures - could significantly increase efficiency in an ultra-thin hot electron solar cell technology.
-end-
In addition to Naughton and Kempa, the research team included Professor of Physics Zhifeng Ren, Research Associate Professor and Laboratory Director Andrzej A. Herczynski, Research Scientist Yantao Gao, doctoral student Timothy Kirkpatrick, and Jakub Rybczynski of Solasta Corp., of Newton MA, which supported the research. Naughton, Kempa and Ren are principals in the clean energy firm as well.

Boston College

Related Solar Cells Articles from Brightsurf:

Solar cells of the future
Organic solar cells are cheaper to produce and more flexible than their counterparts made of crystalline silicon, but do not offer the same level of efficiency or stability.

A blast of gas for better solar cells
Treating silicon with carbon dioxide gas in plasma processing brings simplicity and control to a key step for making solar cells.

Record efficiency for printed solar cells
A new study reports the highest efficiency ever recorded for full roll-to-roll printed perovskite solar cells.

Next gen solar cells perform better when there's a camera around
A literal ''trick of the light'' can detect imperfections in next-gen solar cells, boosting their efficiency to match that of existing silicon-based versions, researchers have found.

On the trail of organic solar cells' efficiency
Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials.

Exciting tweaks for organic solar cells
A molecular tweak has improved organic solar cell performance, bringing us closer to cheaper, efficient, and more easily manufactured photovoltaics.

For cheaper solar cells, thinner really is better
Researchers at MIT and at the National Renewable Energy Laboratory (NREL) have outlined a pathway to slashing costs further, this time by slimming down the silicon cells themselves.

Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.

Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.

Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.

Read More: Solar Cells News and Solar Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.