New discoveries could improve climate projections

December 11, 2009

New discoveries about the deep ocean's temperature variability and circulation system could help improve projections of future climate conditions.

The deep ocean is affected more by surface warming than previously thought, and this understanding allows for more accurate predictions of factors such as sea level rise and ice volume changes.

High ocean surface temperatures have also been found to result in a more vigorous deep ocean circulation system. This increase results in a faster transport of large quantities of warm water, with possible impacts including reduction of sea ice extent and overall warming of the Arctic.

"The deep ocean is relatively unexplored, and we need a true understanding of its many complex processes," said U.S. Geological Survey Director Marcia McNutt. "An understanding of climate change and its impacts based on sound, objective data is a keystone to the type of long-term strategies and solutions that are being discussed now at the United Nations conference in Copenhagen."

USGS scientists created the first ever 3-D reconstruction of an ocean during a past warm period, focusing on the mid-Pliocene warm period 3.3 to 3 million years ago.

"Our findings are significant because they improve our previous understanding that the deep ocean stayed at relatively constant, cold temperatures and that the deep ocean circulation system would slow down as surface temperatures increased," said USGS scientist Harry Dowsett. "By looking at conditions in the past, we acquire real data that allow us to see the global climate system as it actually functioned."

"The average temperature of the entire ocean during the mid-Pliocene was approximately one degree warmer than current conditions, showing that warming wasn't just at the surface but occurred at all depths" said USGS scientist Marci Robinson. "Temperatures were determined by analyzing marine plankton fossils, which are organisms that inhabited the water's surface, as well as fossils of bottom-dwelling organisms, known as ostracodes."

Global average surface temperatures during the mid-Pliocene were about 3°C (5.5°F) greater than today and within the range projected for the 21st century by the Intergovernmental Panel on Climate Change. Therefore it may be one of the closest analogs in helping to understand Earth's current and future conditions. USGS research on the mid-Pliocene is also the most comprehensive global reconstruction for any warm period.
-end-
Read the full article, published in Climate of the Past at http://www.clim-past.net/5/769/2009/cp-5-769-2009.html.

The USGS led this research through the Pliocene Research, Interpretation and Synoptic Mapping group. The primary collaborators in PRISM are Columbia University, Brown University, University of Leeds, University of Bristol, the British Geological Survey and the British Antarctic Survey. Learn more about PRISM research at http://geology.er.usgs.gov/eespteam/prism/index.html.

The USGS provides science for a changing world. For more information, visit www.usgs.gov. Subscribe to USGS News Releases via our electronic mailing list at http://www.usgs.gov/newsroom/list_server.asp or RSS feed at http://feeds.feedburner.com/UsgsNewsroom.

US Geological Survey

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.