BGI study results on resequencing 50 accessions of rice cast new light on molecular breeding

December 11, 2011

Cambridge, MA and Shenzhen, China - BGI, the world's largest genomics organization, announced that a study on resequencing 50 accessions of cultivated and wild rice was published online today in Nature Biotechnology. The study provides one of the largest genome variation data sets for wild and cultivated rice, which is valuable for breeding and for identifying agronomically important genes in rice. This data also yields new insights for geneticists and biologists to deeply explore the domestication history of cultivated rice.

Rice feeds more than half the world's population, and accounts for over 20 percent of the world's total calorie intake. At various times and places in history, some wild rice species formed particularly close relationships with human populations resulting in a range of biological and genetic changes owning to a process known as domestication, a special artificial selection. This process has played an important role in rice cultivation with divergence of many genes controlling important agronomic traits.

Asian cultivated rice (Oryza sativa) is thought to have been domesticated from divergent populations of Asian wild rice, O. rufipogon and O. nivara, about 10,000 years ago. For decades, geneticists have tried various ways to identify the major causative genes responsible for the significant phenotypic traits changed during the domestication, such as grain size, color, shattering, seed dormancy, among others.

"If we want to clearly understand the genome variation between cultivated and wild rice, it's better to know the comprehensive catalog of genome variation in both cultivated and wild rice," said Xun Xu, Vice President of Research and Development Department at BGI, and the leading author of the paper. "The high-quality variation data will greatly facilitate the identification of functional variations and be useful for marker-assisted breeding and gene mapping of rice."

In this study, researchers sequenced 40 cultivated accessions selected from the major groups of Asian cultivated rice and 10 accessions of their wild progenitors. They next investigated genome-wide variation patterns in rice and obtained 6.5 million high-quality single nucleotide polymorphisms (SNPs).

"This is one of the largest high-quality SNP data sets obtained in rice," said Xin Liu, Senior Bioinformatician of BGI and the co-leading author of this paper. "It could provide molecular markers for designing rice SNP arrays and for breeding to identify important rice genes that could potentially improve the quality and yield of rice."

Because of the low levels of variation and skewed allele frequency spectra, some favorable alleles associated with important biological features tend to be rare and are difficult to detect. Using these population SNP data, researchers successfully identified thousands of genes with significantly lower diversity in cultivated but not in wild rice, which indicated the candidate regions were selected during domestication. The validity of this approach was further evidenced by the successful identification of the two well-known rice domestication genes, prog1 and sh4. In addition, the results also support the view that japonica and indica, two major subspecies of cultivated rice, were independently domesticated, and further suggest japonica was domesticated from the Chinese strain of O. rufipogon.

"The millions of SNP data generated in this study not only provide tremendous opportunity to unravel the domestication history of rice, but they also could serve as a valuable source for researchers to rapidly identify agronomically important genes in rice," said Xu. "We hope that this new data accelerates the global effort to improve the quality and yield of rice in order to better address the challenges of a growing world population and food shortages. "
In addition to BGI, co-leaders of the study included Kunming Institute of Zoology, Chinese Academy of Sciences, Graduate University of Chinese Academy Sciences, Institute of Botany, Chinese Academy of Sciences, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), among others.

About BGI

BGI was founded in Beijing, China, in 1999 with the mission to become a premier scientific partner for the global research community. The goal of BGI is to make leading-edge genomic science highly accessible, which it achieves through its investment in infrastructure, leveraging the best available technology, economies of scale, and expert bioinformatics resources. BGI, and its affiliates, BGI Americas, headquartered in Cambridge, MA, and BGI Europe, headquartered in Copenhagen, Denmark, have established partnerships and collaborations with leading academic and government research institutions as well as global biotechnology and pharmaceutical companies, supporting a variety of disease, agricultural, environmental, and related applications.

BGI has a proven track record of excellence, delivering results with high efficiency and accuracy for innovative, high-profile research: research that has generated over 170 publications in top-tier journals such as Nature and Science. BGI's many accomplishments include: sequencing one percent of the human genome for the International Human Genome Project, contributing 10 percent to the International Human HapMap Project, carrying out research to combat SARS and German deadly E. coli, playing a key role in the Sino-British Chicken Genome Project, and completing the sequence of the rice genome, the silkworm genome, the first Asian diploid genome, the potato genome, and, more recently, have sequenced the human Gut Metagenome, and a significant proportion of the genomes for the1000 Genomes Project. For more information about BGI, please visit or

Contact Information:

Xun Xu
Vice President, Research and Development

Joyce Peng, Ph.D.
Marketing Director
BGI Americas Corporation

Bicheng Yang, Ph.D.
Public Communication Officer

BGI Shenzhen

Related Genes Articles from Brightsurf:

Are male genes from Mars, female genes from Venus?
In a new paper in the PERSPECTIVES section of the journal Science, Melissa Wilson reviews current research into patterns of sex differences in gene expression across the genome, and highlights sampling biases in the human populations included in such studies.

New alcohol genes uncovered
Do you have what is known as problematic alcohol use?

How status sticks to genes
Life at the bottom of the social ladder may have long-term health effects that even upward mobility can't undo, according to new research in monkeys.

Symphony of genes
One of the most exciting discoveries in genome research was that the last common ancestor of all multicellular animals already possessed an extremely complex genome.

New genes out of nothing
One key question in evolutionary biology is how novel genes arise and develop.

Good genes
A team of scientists from NAU, Arizona State University, the University of Groningen in the Netherlands, the Center for Coastal Studies in Massachusetts and nine other institutions worldwide to study potential cancer suppression mechanisms in cetaceans, the mammalian group that includes whales, dolphins and porpoises.

How lifestyle affects our genes
In the past decade, knowledge of how lifestyle affects our genes, a research field called epigenetics, has grown exponentially.

Genes that regulate how much we dream
Sleep is known to allow animals to re-energize themselves and consolidate memories.

The genes are not to blame
Individualized dietary recommendations based on genetic information are currently a popular trend.

Timing is everything, to our genes
Salk scientists discover critical gene activity follows a biological clock, affecting diseases of the brain and body.

Read More: Genes News and Genes Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to