New system for aircraft forecasts potential storm hazards over oceans

December 11, 2012

BOULDER--The National Center for Atmospheric Research (NCAR) has developed a prototype system to help flights avoid major storms as they travel over remote ocean regions. The 8-hour forecasts of potentially dangerous atmospheric conditions are designed for pilots, air traffic controllers, and others involved in transoceanic flights.

The NCAR-based system, developed with funding from NASA's Applied Sciences Program, combines satellite data and computer weather models to produce maps of storms over much of the world's oceans. The system is based on products that NCAR has developed to alert pilots and air traffic controllers about storms and related hazards, such as turbulence and lightning, over the continental United States.

Development of the forecasts was spurred in part by the 2009 crash of Air France Flight 447, which encountered a complex of thunderstorms over the Atlantic Ocean. NCAR worked with the Massachusetts Institute of Technology's Lincoln Laboratory, the Naval Research Laboratory, and the University of Wisconsin-Madison to create the system.

"These new forecasts can help fill an important gap in our aviation system," says NCAR's Cathy Kessinger, the lead researcher on the project. "Pilots have had limited information about atmospheric conditions as they fly over the ocean, where conditions can be severe. By providing them with a picture of where significant storms will be during an eight-hour period, the system can contribute to both the safety and comfort of passengers on flights over the ocean."

The forecasts, which continue to be tested and modified, can be viewed at http://www.rap.ucar.edu/projects/ocn/realtime_sys/global_extrap/. They cover most of the Atlantic and Pacific oceans, where NCAR has real-time access to geostationary satellite data. The forecasts are updated every three hours.

-----Flying with limited information-----

Pilots of transoceanic flights currently get preflight briefings and, in certain cases involving especially intense storms, in-flight weather updates every four hours. They also have onboard radar.

The information, however, is of limited value for strategic flight planning while en route. Pinpointing turbulence associated with storms over the oceans is far more challenging than over land because geostationary satellites, unlike ground-based radar, cannot see within the clouds. Thunderstorms may develop quickly and move rapidly, rendering the briefings and weather updates obsolete. Onboard radars lack the power to see long distances or through dense clouds.

As a result, pilots often must choose between detouring hundreds of miles around potentially stormy areas or flying through a region that may or may not contain intense weather. Storms may be associated with hazardous windshear and icing conditions, in addition to lightning, hail, and potentially severe turbulence.

"Turbulence is the leading cause of injuries in commercial aviation," says John Haynes, Applied Sciences Program manager at NASA Headquarters in Washington. "This prototype system is of crucial importance to pilots and is another demonstration of the practical benefit of NASA's Earth observations."

To create the forecasts, Kessinger and her colleagues first turned to geostationary satellite measurements to identify regions of the atmosphere that met two conditions: particularly high cloud tops and water vapor at high altitudes. Those two conditions are a sign of strong updrafts that can buffet an aircraft and are also correlated with powerful storms. They then used fuzzy logic and data fusion techniques to home in on storms of particular concern, and applied object tracking techniques and simulations of wind fields to predict storm locations at hourly intervals out to eight hours.

Researchers verified the forecasts using observations from the NASA Tropical Rainfall Measuring Mission (TRMM) satellite.

"These advanced techniques enable us to inform pilots about the potential for violent downdrafts and turbulence, even over the middle of the ocean where we don't have land-based radar or other tools to observe storms in detail," Kessinger says.
-end-
The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under sponsorship by the National Science Foundation. Any opinions, findings and conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

On the Web

Oceanic convection forecasting system http://www.rap.ucar.edu/projects/ocn/realtime_sys/global_extrap/

News releases, visuals, and more: www.ucar.edu/atmosnews

National Center for Atmospheric Research/University Corporation for Atmospheric Research

Related Turbulence Articles from Brightsurf:

Turbulence affects aerosols and cloud formation
Turbulent air in the atmosphere affects how cloud droplets form.

Atmospheric turbulence affects new particle formation: Common finding on three continents
New particle formation (NPF) over three countries is investigated using aerosol physicochemical quantities and turbulence information.

Laser technology: The Turbulence and the Comb
While the light of an ordinary laser only has one single, well-defined wavelength, a so-called ''frequency comb'' consists of different light frequencies, which are precisely arranged at regular distances, much like the teeth of a comb.

Return of the Blob: Surprise link found to edge turbulence in fusion plasma
Correlation discovered between magnetic turbulence in fusion plasmas and troublesome blobs at the plasma edge.

Researchers unveil the universal properties of active turbulence
Turbulent flows are chaotic yet feature universal statistical properties.Over the recent years, seemingly turbulent flows have been discovered in active fluids such as bacterial suspensions, epithelial cell monolayers, and mixtures of biopolymers and molecular motors.

Unraveling turbulence
Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) may have identified a fundamental mechanism by which turbulence develops by smashing vortex rings head-on into each other, recording the results with ultra-high-resolution cameras, and reconstructing the collision dynamics using a 3D visualization program.

Researchers develop first mathematical proof for key law of turbulence in fluid mechanics
Turbulence is one of the least understood phenomena of the physical world.

A new parallel strategy for tackling turbulence on Summit
A Georgia Tech team developed an algorithm for simulating turbulence on Summit, the world's most powerful and smartest supercomputer.

Turbulence creates ice in clouds
Vertical air motions increase ice formation in mixed-phase clouds. This correlation was predicted theoretically for a long time, but could now be observed for the first time in nature.

Turbulence meets a shock
Interaction of shocks and turbulence investigated with a focus on high intensity turbulence levels.

Read More: Turbulence News and Turbulence Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.