Rice cultivates green batteries from plant

December 11, 2012

HOUSTON - (Dec. 11, 2012) - Here's a reason to be glad about madder: The climbing plant has the potential to make a greener rechargeable battery.

Scientists at Rice University and the City College of New York have discovered that the madder plant, aka Rubia tinctorum, is a good source of purpurin, an organic dye that can be turned into a highly effective, natural cathode for lithium-ion batteries. The plant has been used since ancient times to create dye for fabrics.

The discovery is the subject of a paper that appears today in Nature's online, open-access journal Scientific Reports.

The goal, according to lead author Arava Leela Mohana Reddy, a research scientist in the Rice lab of materials scientist Pulickel Ajayan, is to create environmentally friendly batteries that solve many of the problems with lithium-ion batteries in use today.

"Green batteries are the need of the hour, yet this topic hasn't really been addressed properly," Reddy said. "This is an area that needs immediate attention and sustained thrust, but you cannot discover sustainable technology overnight. The current focus of the research community is still on conventional batteries, meeting challenges like improving capacity. While those issues are important, so are issues like sustainability and recyclability."

While lithium-ion batteries have become standard in conventional electronics since their commercial introduction in 1991, the rechargeable units remain costly to manufacture, Reddy said. "They're not environmentally friendly. They use cathodes of lithium cobalt oxide, which are very expensive. You have to mine the cobalt metal and manufacture the cathodes in a high-temperature environment. There are a lot of costs.

"And then, recycling is a big issue," he said. "In 2010, almost 10 billion lithium-ion batteries had to be recycled, which uses a lot of energy. Extracting cobalt from the batteries is an expensive process."

Reddy and his colleagues came across purpurin while testing a number of organic molecules for their ability to electrochemically interact with lithium and found purpurin most amenable to binding lithium ions. With the addition of 20 percent carbon to add conductivity, the team built a half-battery cell with a capacity of 90 milliamp hours per gram after 50 charge/discharge cycles. The cathodes can be made at room temperature, he said.

"It's a new mechanism we are proposing with this paper, and the chemistry is really simple," Reddy said. He suggested agricultural waste may be a source of purpurin, as may other suitable molecules, which makes the process even more economical.

Innovation in the battery space is needed to satisfy future demands and counter environmental issues like waste management, "and hence we are quite fascinated by the ability to develop alternative electrode technologies to replace conventional inorganic materials in lithium-ion batteries," said Ajayan, Rice's Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry.

"We're interested in developing value-added chemicals, products and materials from renewable feedstocks as a sustainable technology platform," said co-lead author George John, a professor of chemistry at the City College of New York-CUNY and an expert on bio-based materials and green chemistry. "The point has been to understand the chemistry between lithium ions and the organic molecules. Now that we have that proper understanding, we can tap other molecules and improve capacity."

Recent work by the Ajayan Group combines silicon and a porous nickel current collector in a way that has proven effective as a high-capacity anode, the other electrode in a lithium-ion battery. That research was reported recently in the American Chemical Society journal Nano Letters.

But Reddy hopes to formulate completely green batteries. The team is looking for organic molecules suitable for anodes and for an electrolyte that doesn't break the molecules down. He fully expects to have a working prototype of a complete organic battery within a few years. "What we've come up with should lead to much more discussion in the scientific community about green batteries," he said.

Co-authors of the paper are visiting scholar Porramate Chumyim and former graduate student Sanketh Gowda of Rice; postdoctoral researcher Subbiah Nagarajan, facilities manager Padmanava Pradhan and graduate student Swapnil Jadhav of the City College of New York; and Madan Dubey of the U.S. Army Research Laboratory.

The research was funded by the Army Research Office.
-end-
Read the paper at http://www.nature.com/srep/2012/121211/srep00960/full/srep00960.html

This news release can be found online at news.rice.edu.

Follow Rice News and Media Relations via Twitter @RiceUNews

Related Materials:

Three dimensionally engineered porous silicon electrodes for Li ion battery: http://pubs.acs.org/doi/abs/10.1021/nl302114j

Ajayan Group: http://www.owlnet.rice.edu/~rv4/Ajayan/

George John's Soft Material Research Group: http://www.sci.ccny.cuny.edu/~john/

Images for download:

http://news.rice.edu/wp-content/uploads/2012/12/1207_MADDER-2-WEB.jpg

Purpurin, left, extracted from madder root, center, is chemically lithiated, right, for use as an organic cathode in batteries. The material was developed as a less expensive, easier-to-recycle alternative to cobalt oxide cathodes now used in lithium-ion batteries. (Credit: Ajayan Lab/Rice University)

http://news.rice.edu/wp-content/uploads/2012/12/1207_MADDER-3-WEB.jpg

Scientists at Rice University and City College of New York are making organic elements for lithium-ion batteries from the root of the madder plant, historically used as a red dye. (Credit: Creative Commons/Wikipedia)

http://news.rice.edu/wp-content/uploads/2012/12/1207_MADDER-1-web.jpg

Arava Leela Mohana Reddy. (Credit Jeff Fitlow/Rice University)

Rice University

Related Rice Articles from Brightsurf:

C4 rice's first wobbly steps towards reality
An international long-term research collaboration aimed at creating high yielding and water use efficient rice varieties, has successfully installed part of the photosynthetic machinery from maize into rice.

Rice has many fathers but only two mothers
University of Queensland scientists studied more than 3000 rice genotypes and found diversity was inherited through two maternal genomes identified in all rice varieties.

Rice rolls out next-gen nanocars
Rice University researchers continue to advance the science of single-molecule machines with a new lineup of nanocars, in anticipation of the next international Nanocar Race in 2022.

3D camera earns its stripes at Rice
The Hyperspectral Stripe Projector captures spectroscopic and 3D imaging data for applications like machine vision, crop monitoring, self-driving cars and corrosion detection.

Climate change could increase rice yields
Research reveals how rice ratooning practices can help Japanese farmers increase rice yields.

Breeding new rice varieties will help farmers in Asia
New research shows enormous potential for developing improved short-duration rice varieties.

High-protein rice brings value, nutrition
A new advanced line of rice, with higher yield, is ready for final field testing prior to release.

Rice plants engineered to be better at photosynthesis make more rice
A new bioengineering approach for boosting photosynthesis in rice plants could increase grain yield by up to 27 percent, according to a study publishing January 10, 2019 in the journal Molecular Plant.

Can rice filter water from ag fields?
While it's an important part of our diets, new research shows that rice plants can be used in a different way, too: to clean runoff from farms before it gets into rivers, lakes, and streams.

Rice plants evolve to adapt to flooding
Although water is essential for plant growth, excessive amounts can waterlog and kill a plant.

Read More: Rice News and Rice Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.