Study uncovers new evidence for assessing tsunami risk from very large volcanic island landslides

December 11, 2013

The risk posed by tsunami waves generated by Canary Island landslides may need to be re-evaluated, according to researchers at the National Oceanography Centre. Their findings suggest that these landslides result in smaller tsunami waves than previously thought by some authors, because of the processes involved.

The researchers used the geological record from deep marine sediment cores to build a history of regional landslide activity over the last 1.5 million years. They found that each large-scale landslide event released material into the ocean in stages, rather than simultaneously as previously thought.

The findings - reported recently in the scientific journal Geochemistry Geophysics Geosystems - can be used to inform risk assessment from landslide-generated tsunamis in the area, as well as mitigation strategies to defend human populations and infrastructure against these natural hazards. The study also concluded that volcanic activity could be a pre-condition to major landslide events in the region.

The main factor influencing the amplitude of a landslide-generated tsunami is the volume of material sliding into the ocean. Previous efforts, which have assessed landslide volumes, have assumed that the entire landslide volume breaks away and enters the ocean as a single block. Such studies - and subsequent media coverage - have suggested an event could generate a 'megatsunami' so big that it would travel across the Atlantic Ocean and devastate the east coast of the US, as well as parts of southern England.

The recent findings shed doubt on this theory. Instead of a single block failure, the landslides in the past have occurred in multiple stages, reducing the volumes entering the sea, and thereby producing smaller tsunami waves. Lead author Dr James Hunt explains: "If you drop a block of soap into a bath full of water, it makes a relatively big splash. But if you break it up into smaller pieces and drop it in bit by bit, the ripples in the bath water are smaller."

The scientists were able to identify this mechanism from the deposits of underwater sediment flows called turbidity currents, which form as the landslide mixes with surrounding seawater. Their deposits, known as 'turbidites', were collected from an area of the seafloor hundreds of miles away from the islands. Turbidites provide a record of landslide history because they form from the material that slides down the island slopes into the ocean, breaks up and eventually settles on this flatter, deeper part of the seafloor.

However, the scientists could not assume that multistage failure necessarily results in less devastating tsunamis - the stages need to occur with enough time in between so that the resulting waves do not compound each other. "If you drop the smaller pieces of soap in one by one but in very quick succession, you can still generate a large wave," says Dr Hunt.

Between the layers of sand deposited by the landslides, the team found mud, providing evidence that the stages of failure occurred some time apart. This is because mud particles are so fine that they most likely take weeks to settle out in the ocean, and even longer to form a layer that would be resistant enough to withstand a layer of sand moving over the top of it.

While the authors suggest that the tsunamis were not as big as originally thought, they state that tsunamis are a threat that the UK should be taking seriously. The Natural Environment Research Council (NERC) is investing in a major programme looking at the risk of tsunamis from Arctic landslides as part of the Arctic Research Programme, of which NOC is the lead collaborator. The EU have also just funded a £6 million FP7 project called ASTARTE, looking at tsunami risk and resilience on the European North Atlantic and Mediterranean coasts, of which NOC is a partner.

The current study was funded by NERC, through a NOC studentship.
-end-
Notes for editors

1. References:

Hunt, J.E., Wynn, R.B., Talling, P.J., Masson D.G. (2013) Turbidite record of frequency and source of large volume (>100 km3) Canary Island landslides in the last 1.5 Ma: Implications for landslide triggers and geohazards, Geochem. Geophys. Geosyst., 14, 2100-2123, doi:10.1002/ggge.20139

Hunt, J.E., Wynn, R.B., Talling, P.J., Masson, D.G. (2013) Multistage collapse of eight western Canary Island landslides in the last 1.5 Ma: Sedimentological and geochemical evidence from subunits in submarine flow deposits, Geochem. Geophys. Geosyst., 14, 2159-2181, doi:10.1002/ggge.20138

2. Image: Extracting a core from the seabed. Credit Russell Wynn.

3. The National Oceanography Centre (NOC) is the UK's leading institution for integrated coastal and deep ocean research. NOC operates the Royal Research Ships James Cook and Discovery and develops technology for coastal and deep ocean research. Working with its partners NOC provides long-term marine science capability including: sustained ocean observing, mapping and surveying, data management and scientific advice.

NOC operates at two sites, Southampton and Liverpool, with the headquarters based in Southampton.

Among the resources that NOC provides on behalf of the UK are the British Oceanographic Data Centre (BODC), the Marine Autonomous and Robotic Systems (MARS) facility, the National Tide and Sea Level Facility (NTSLF), the Permanent Service for Mean Sea Level (PSMSL) and British Ocean Sediment Core Research Facility (BOSCORF).

The National Oceanography Centre is wholly owned by the Natural Environment Research Council (NERC).

4. Contact information

Catherine Beswick, Communications Officer, National Oceanography Centre, catherine.beswick@noc.ac.uk, +44 238 059 8490.

http://www.noc.ac.uk

National Oceanography Centre, UK

Related Landslides Articles from Brightsurf:

Simple actions can help people survive landslides
Simple actions can dramatically improve a person's chances of surviving a landslide, according to records from 38 landslides in the US and around the world.

Landslides have long-term effects on tundra vegetation
Landslides have long-term effects on tundra vegetation, a new study shows.

Most landslides in western Oregon triggered by heavy rainfall, not big earthquakes
Deep-seated landslides in the central Oregon Coast Range are triggered mostly by rainfall, not by large offshore earthquakes.

FSU researcher detects unknown submarine landslides in Gulf of Mexico
A Florida State University researcher has used new detection methods to identify 85 previously unknown submarine landslides that occurred in the Gulf of Mexico between 2008 and 2015, leading to questions about the stability of oil rigs and other structures, such as pipelines built in the region.

Climate change could trigger more landslides in High Mountain Asia
More frequent and intense rainfall events due to climate change could cause more landslides in the High Mountain Asia region of China, Tibet and Nepal, according to the first quantitative study of the link between precipitation and landslides in the region.

Martian landslides not conclusive evidence of ice
Giant ridges on the surface of landslides on Mars could have formed without ice, challenging their use by some as unequivocal evidence of past ice on the red planet, finds a new UCL-led study using state-of-the-art satellite data.

Ground failure study shows deep landslides not reactivated by 2018 Anchorage Quake
Major landslides triggered by the 1964 magnitude 9.2 Great Alaska earthquake responded to, but were not reactivated by, the magnitude 7.1 Anchorage earthquake that took place 30 November 2018, researchers concluded in a new study published in Seismological Research Letters.

Rice irrigation worsened landslides in deadliest earthquake of 2018 finds NTU study
Irrigation significantly exacerbated the earthquake-triggered landslides in Palu, on the Indonesian island of Sulawesi, in 2018, according to an international study led by Nanyang Technological University, Singapore (NTU Singapore) scientists.

Precursors of a catastrophic collapse
The flanks of many island volcanoes slide very slowly towards the sea.

Quick reconnaissance after 2018 Anchorage quake reveals signs of ground failure
A day after the Nov. 30, 2018, magnitude 7 earthquake in Anchorage, Alaska, US Geological Survey scientists Robert Witter and Adrian Bender had taken to the skies.

Read More: Landslides News and Landslides Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.