Alpine glacier, unchanged for thousands of years, now melting

December 11, 2013

SAN FRANCISCO--Less than 20 miles from the site where melting ice exposed the 5,000-year-old body of Ötzi the Iceman, scientists have discovered new and compelling evidence that the Italian Alps are warming at an unprecedented rate.

Part of that evidence comes in the form of a single dried-out leaf from a larch tree that grew thousands of years ago.

A six-nation team of glaciologists led by The Ohio State University drilled a set of ice cores from atop Mt. Ortles in northern Italy, and described their early findings on Monday, Dec. 9 at the American Geophysical Union meeting in San Francisco.

The Alto dell'Ortles glacier, which did not show signs of melting for thousands of years, now appears to be shifting away from a constantly below-freezing state to one where its upper layers are at the melting point throughout the year, said project leader Paolo Gabrielli, research scientist at Byrd Polar Research Center at Ohio State.

"Our first results indicate that the current atmospheric warming at high elevation in the Alps is outside the normal cold range held for millennia," he said. "This is consistent with the rapid, ongoing shrinking of glaciers at high elevation in this area."

As they drilled into the glacier in 2011, Gabrielli and his team discovered that the first 100 feet (about 30 meters) of the glacier was composed of "firn"--grainy, compacted snow that had partly melted. Below that, they found nothing but solid and colder ice all the way down to the frozen bedrock.

That suggests that snow was accumulating on the mountaintop and was compacted into ice for thousands of years without ever melting--until about 30 years ago, which is when each year's new deposit of snow began melting.

The researchers know that the glacier had previously remained unchanged for a very long time--in part because of the preserved larch leaf, which they found wedged into the ice well beyond the firn layer, around 240 feet beneath the surface and encased in solid ice. They identified the leaf as belonging to Larix decidua, or the European larch.

Carbon dating determined it to be around 2,600 years old. That means that Ötzi had already been dead for more than two millennia when this particular larch tree grew, though it was not far from his resting place.

"The leaf supports the idea that prehistoric ice is still present at the highest elevations of the region," Gabrielli said.

The researchers are just beginning to chemically analyze the ice cores they retrieved. Trace metals and dust sealed in the ice will give more detailed clues to the climatic conditions when the ice was formed.

Gabrielli added that the cores are unique in the European Alps, because the winter and summer layers of ice accumulation are easily identifiable, offering the promise of a high-resolution climate record.

Of particular interest to the researchers is why temperatures in the Alps are increasing at twice the global rate. As the highest glacier in the eastern Alps (2.4 miles, or 3.9 km, above sea level), Alto dell'Ortles is located in the heart of Europe--one of the most industrialized and populated areas of the world. The team will investigate whether soot emitted by human activities in central and southern Europe plays a role--perhaps by darkening the surface of the glacier, absorbing the sun's heat and melting ice.

"Ortles offers us the unique possibility to closely verify if and how regional environmental changes can interact with climatic changes of global significance," Gabrielli said.
-end-
His Ohio State colleagues on the project included Lonnie Thompson and Mary Davis. International collaborators hailed from: University of Venice, Accademia Nazionale dei Lincei, Provincia Autonoma di Bolzano, Waterstones Geomonitoring, University of Padua, University of Pavia and University of Trieste, all of Italy; the Russian Academy of Sciences in Moscow; the University of Innsbruck, Austria; and the University of Bern, Switzerland.

This work was partly funded by the National Science Foundation.

The poster, "A high altitude paleoclimate record from an ice core retrieved at the northern margin of the Mediterranean basin," was shown on Dec. 9 in Moscone South Hall A-C.

Contact:

Paolo Gabrielli
Gabrielli.1@osu.edu

Written by Pam Frost Gorder
(614) 292-9475
Gorder.1@osu.edu

Editor's note: To reach Gabrielli during the meeting, email him or contact Pam Frost Gorder. Images of the ancient larch leaf discovered in the Alto dell'Ortles glacier and a modern larch leaf are available from Pam Frost Gorder.

Ohio State University

Related Glacier Articles from Brightsurf:

Consequences of glacier shrinkage
Scientists from Heidelberg University have investigated the causes of a glacial lake outburst flood in the Ladakh region of India.

Meltwater lakes are accelerating glacier ice loss
Meltwater lakes that form at glacier margins cause ice to recede much further and faster compared to glaciers that terminate on land, according to a new study.

Deep channels link ocean to Antarctic glacier
Newly discovered deep seabed channels beneath Thwaites Glacier in West Antarctica may be the pathway for warm ocean water to melt the underside of the ice.

New Zealand's Southern Alps glacier melt has doubled
Glaciers in the Southern Alps of New Zealand have lost more ice mass since pre-industrial times than remains today, according to a new study led by the University of Leeds.

Glacier detachments: A new hazard in a warming world?
On the evening of 5 August 2013, a startling event occurred deep in the remote interior of the United States' largest national park.

East Antarctica's Denman Glacier has retreated almost 3 miles over last 22 years
East Antarctica's Denman Glacier has retreated 5 kilometers, nearly 3 miles, in the past 22 years, and researchers at the University of California, Irvine and NASA's Jet Propulsion Laboratory are concerned that the shape of the ground surface beneath the ice sheet could make it even more susceptible to climate-driven collapse.

Himalayan glacier shows evidence of start of Industrial Revolution
Human beings altered one of the highest peaks in the Himalayas hundreds of years before a person ever set foot there, new research has found.

Patterns of thinning of Antarctica's biggest glacier are opposite to previously observed
Using the latest satellite technology from the European Space Agency (ESA), scientists from the University of Bristol have been tracking patterns of mass loss from Pine Island -- Antarctica's largest glacier.

Unusual glacier flow could be first-ever look at ice stream formation (video available)
Scientists have captured the birth of a high-speed ice feature for the first time on top of a Russian glacier.

Glacier-fed rivers may consume atmospheric carbon dioxide
Glacier-fed rivers in northern Canada may be consuming significant amounts of carbon dioxide from the atmosphere, according to new research by University of Alberta biologists.

Read More: Glacier News and Glacier Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.