Staph can lurk deep within nose, Stanford study finds

December 11, 2013

STANFORD, Calif. -- Scientists at the Stanford University School of Medicine have revealed that formerly overlooked sites deep inside the nose may be reservoirs for Staphylococcus aureus, a major bacterial cause of disease.

The results of the study will be published Dec. 11 in Cell Host & Microbe.

The Stanford investigators further found an inverse relationship between the presence of S. aureus at these sites and that of a different bacterial species, Corynebacterium pseudodiphtheriticum, suggesting that the two organisms compete with each other and that C. pseudodiphtheriticum -- or some molecular product it excretes -- may prove useful in countering S. aureus infections.

"About one-third of all people are persistent S. aureus carriers, another third are occasional carriers and a remaining third don't seem to carry S. aureus at all," said David Relman, MD, the Thomas C. and Joan M. Merigan Professor and a professor of medicine and of microbiology and immunology. Relman, who is also chief of the infectious disease section at Veterans Affairs Palo Alto Health Care System, was the study's senior author. The lead author was Miling Yan, PhD, a graduate student in Relman's lab at the time the experiments were performed.

"The nose has been long known to be a primary reservoir of S. aureus," Relman said. The bug also abounds on the skin, with a special affinity for the armpits and groin. The vast majority of the time, however, it does little or no harm. (If it's doing any good, no one has figured out yet what that is, Relman added.)

But if the skin is compromised by, for example, a wound or a medical incision or catheter placement, S. aureus can get into the bloodstream and cause serious and even life-threatening problems such as sepsis, pneumonia or infection of heart valves. Close to half of all S. aureus strains are resistant to a family of antibiotics that includes methicillin. In 2011, more than 80,000 severe methicillin-resistant S. aureus infections, as well as more than 11,000 related deaths, occurred in the United States alone, along with a much higher number of less-severe infections.

"Not everyone who carries S. aureus gets sick," Relman said. "When they're out walking the streets and otherwise healthy, attempts to rid them of their S. aureus are not necessary, and even sometimes futile. But once a carrier enters a hospital with an underlying illness or a weakened immune system or a high likelihood of undergoing skin-penetrating procedures, S. aureus carriage is a major liability."

Rigorous and somewhat tedious regimens for eliminating S. aureus residing on people's skin or in their noses do exist, but it's typically a matter of weeks or months before the bacteria repopulate those who are susceptible. The new study offers a possible reason why this is the case.

The scientists recruited 12 healthy subjects and brought them to a Stanford ear, nose and throat clinic run by study co-author Peter Hwang, MD, professor of otolaryngology. Employing special instrumentation to allow them to guide tiny swabs to precise locations within the nose, they took samples from three specific areas. The first location -- and far and away the most well-studied because it's much more accessible -- was the anterior naris, a relatively dry skin-like patch of tissue located near the nostril. The second was the middle meatus -- a warmer, wetter, mucus-producing fold found about midway up the nasal cavity. And the third was the sphenoethmoidal recess, situated deep within the cavity near the roof of the nose and, like the middle meatus, warm, wet and mucosal.

The researchers found that the presence or absence of S. aureus at one nasal site typically correlated with its presence or absence at the other two. An implication: If a person's anterior naris is carrying the bacteria, the upper mucosal areas probably are, too. This could be why efforts to banish S. aureus have so often proved short-lived. Focusing efforts largely on the bacteria in the anterior naris, which current decolonization procedures do, leaves deeper reservoirs intact.

Relman's team learned three other things, as well. First, the relative abundance of S. aureus was inversely related to that of another bacterial species, C. pseudodiphtheriticum. When one was present at high levels, the other was present at low levels or absent. One of the study's co-authors, Sunje Pamp, PhD, a research associate in Relman's lab, put the two bacterial species on an agar plate to scrutinize this relationship further, and found that C. pseudodiphtheriticum strongly blocked the growth of S. aureus.

The researchers suspect that something C. pseudodiphtheticum produces and secretes -- perhaps a protein, or possibly a small molecule -- is responsible for S. aureus' failure to thrive. If such a substance could be identified, Pamp said, it could provide clues to the development of new compounds to prevent or treat S. aureus infections.

Second, the microbial communities in those patients who harbor S. aureus differed in other ways from those in patients who don't. This could mean that S. aureus alters its environment to make it more or less hospitable to various other microbes. Or it could mean that different microbial communities are more or less hospitable to colonization by S. aureus. If the latter is the case, it may be possible to predict, based on their resident nasal microbes, which patients are most likely to be at high risk of a S. aureus infection -- even if they're not currently carrying it -- and monitor and treat them accordingly. Those patients found to be at lower risk could be spared such procedures.

Third, in the middle meatus and the sphenoethmoidal recess -- the two deeper, wetter mucosal regions of the nose -- microbial communities were similar to each another, but quite distinct from the one inhabiting the more accessible and better-studied outer site, the anterior naris. This suggests that currently routine methods of sampling the nasal cavity for microbe-research purposes may be yielding skewed results.
-end-
Other study co-authors were graduate student Julia Fukuyama; otolaryngology resident Do-Yeon, MD; and statistics professor Susan Holmes, PhD. The study was funded by a National Institutes of Health Pioneer Award (grant DP1OD000964), the Doris Duke Charitable Trust and the Thomas C. and Joan M. Merigan Endowment.

Information on Stanford's Department of Microbiology and Immunology and Department of Medicine, which also supported this work, is available at http://microimmuno.stanford.edu and http://medicine.stanford.edu, respectively.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

Print media contact:

Bruce Goldman at (650) 725-2106 (goldmanb@stanford.edu)

Broadcast media contact:


M.A. Malone at (650) 723-6912 (mamalone@stanford.edu)

Stanford University Medical Center

Related Staphylococcus Aureus Articles from Brightsurf:

Vaccine that harnesses antifungal immunity protects mice from staph infection
Immunization of mice with a new vaccine consisting of fungal particles loaded with Staphylococcus aureus (S. aureus) proteins protects mice against S. aureus infection, according to a study published August 20 2020 in the open-access journal PLOS Pathogens by David Underhill of Cedars-Sinai Medical Center, and colleague.

New strategy emerges for vaccine against methicillin-resistant staphylococcal aureus
Experiments in mice have shown early success in vaccinating them against potentially deadly bacterial infections, such as methicillin-resistant Staphylococcal aureus, or MRSA, the strain resistant to most drug treatments.

Ways to disrupt protein synthesis in Staphylococcus aureus found
It is well known that many strains of Staphylococcus are resistant to antibiotics, and research groups around the world seek new targets in the bacteria to decrease their infectious potential.

Protective shield: How pathogens withstand acidic environments in the body
Certain bacteria, including the dangerous nosocomial pathogen MRSA, can protect themselves from acidic conditions in our body and thus ensure their survival.

One of the mechanisms of Staphylococcus antibiotic resistance deciphered
The Russian side is represented by Structural Biology Lab (Kazan Federal University) and Institute of Proteins (Russian Academy of Sciences).

Trial shows using two drugs not better than one when treating MRSA blood infections
Researchers attempting to improve the treatment for methicillin-resistant Staphylococcus aureus (MRSA) blood infections have discovered the combination of two antibiotics was no better than one, and led to more adverse effects.

Solution of the high-resolution crystal structure of stress proteins from Staphylococcus
One of the main factors favoring a microorganism's survival in extreme conditions is preserving ribosomes -- a macromolecular complex comprising RNA and proteins

A common skin bacterium put children with severe eczema at higher risk of food allergy
In a new study published today in the Journal of Allergy and Clinical Immunology, scientists from King's College London have found that young children with severe eczema infected with Staphylococcus aureus (SA) bacterium, are at a higher risk of developing a food allergy.

National handwashing campaign reduces incidence of Staphylococcus aureus infection in Australia's hospitals
Since its implementation in 2009, the National Australian Hand Hygiene Initiative (NHHI) has seen significant, sustained improvements in hand hygiene compliance among Australian healthcare workers, and reduced risks of potentially fatal healthcare-associated Staphylococcus aureus infection, according to new research being presented at this year's European Congress of Clinical Microbiology & Infectious Diseases (ECCMID) in Amsterdam.

Experimental treatment approach shows potential against Staphylococcus aureus
A new class of engineered proteins may counter infection caused by Staph aureus.

Read More: Staphylococcus Aureus News and Staphylococcus Aureus Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.