Hipster, surfer or biker? Computers may soon be able to tell the difference

December 11, 2013

Are you a hipster, surfer or biker? What is your urban tribe? Your computer may soon be able to tell. Computer scientists at the University of California, San Diego, are developing an algorithm that uses group pictures to determine to which of these groups, or urban tribes, you belong. So far, the algorithm is 48 percent accurate on average. That's better than chance--which gets answers right only nine percent of the time--but researchers would like the algorithm perform at least as well as humans would.

An algorithm able to identify people's urban tribes would have a wide range of applications, from generating more relevant search results and ads, to allowing social networks to provide better recommendations and content. There also is a growing interest in analyzing footage from cameras installed in public spaces to identify groups rather than individuals.

Computer scientists presented their findings at the British Machine Vision Conference in the United Kingdom this fall.

"This is a first step," said Serge Belongie, a computer science professor at the Jacobs School of Engineering at the University of California, San Diego, and co-author of the study. "We are scratching the surface to figure out what the signals are."

This is an extremely difficult problem, Belongie explained, and a 48 percent accuracy rate is actually a very good result. One of the researchers' insights was to look at group pictures rather than pictures of individuals. They hoped that this would make it easier to pick up social cues, such as clothing and hairdos, to determine people's tribes based on visuals featuring more than one person.

While humans can recognize urban tribes at a glance, computers cannot. So the algorithm segments each person in six sections--face, head, top of the head (where a hat would be), neck, torso and arms. This method is an example of what's better known as a "parts and attributes" approach. Computer scientists designed the algorithm to analyze the picture as the sum of its parts and attributes--in this case haircuts, hair color, make up, jewelry and tattoos, for example. The algorithm also analyzes the boxes for color, texture and other factors.

Researchers then let data do the work, feeding the algorithm pictures labeled for the urban tribes they represent--hipsters, surfers, bikers, Goth, etc.--a common machine learning technique. Finally, they fed the algorithm pictures without labels. The computer vision program accurately determined to which urban tribe the pictures belonged 48 percent of the time--better than random. The researcher's next step is to run the same set of pictures by human users and see how they perform.

In addition, the UC San Diego researchers are working with Lubomir Bourdev, a fomer Ph.D. computer science student at UC Berkeley, and Peter Belhumeur from the Department of Computer Science at Columbia University to improve the analysis of facial features and other attributes within the system.

To define urban tribes in the study, computer scientists turned to Wikipedia and selected the eight most popular categories in the encyclopedia's list of subcultures: biker, country, Goth, heavy metal, hip hop, hipster, raver and surfer. They also included photographs from three common categories for social venues: formal events, dance clubs and casual pubs.

A by-product of their research was the development of an extensive dataset of urban tribe pictures, including hundreds of images, which they plan to make available to other research groups.
-end-
In addition to Belongie and Belhumeur, other co-authors on the paper are Ph.D. student Iljung Sam Kwak and Professor David Kriegman, both in the Department of Computer Science and Engineering at UC San Diego, and Ana C. Murillo, from the University of Zaragoza in Spain and currently a visiting scholar at UC San Diego.

University of California - San Diego

Related Algorithm Articles from Brightsurf:

CCNY & partners in quantum algorithm breakthrough
Researchers led by City College of New York physicist Pouyan Ghaemi report the development of a quantum algorithm with the potential to study a class of many-electron quantums system using quantum computers.

Machine learning algorithm could provide Soldiers feedback
A new machine learning algorithm, developed with Army funding, can isolate patterns in brain signals that relate to a specific behavior and then decode it, potentially providing Soldiers with behavioral-based feedback.

New algorithm predicts likelihood of acute kidney injury
In a recent study, a new algorithm outperformed the standard method for predicting which hospitalized patients will develop acute kidney injury.

New algorithm could unleash the power of quantum computers
A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.

QUT algorithm could quash Twitter abuse of women
Online abuse targeting women, including threats of harm or sexual violence, has proliferated across all social media platforms but QUT researchers have developed a sophisticated statistical model to identify misogynistic content and help drum it out of the Twittersphere.

New learning algorithm should significantly expand the possible applications of AI
The e-prop learning method developed at Graz University of Technology forms the basis for drastically more energy-efficient hardware implementations of Artificial Intelligence.

Algorithm predicts risk for PTSD after traumatic injury
With high precision, a new algorithm predicts which patients treated for traumatic injuries in the emergency department will later develop posttraumatic stress disorder.

New algorithm uses artificial intelligence to help manage type 1 diabetes
Researchers and physicians at Oregon Health & Science University have designed a method to help people with type 1 diabetes better manage their glucose levels.

A new algorithm predicts the difficulty in fighting fire
The tool completes previous studies with new variables and could improve the ability to respond to forest fires.

New algorithm predicts optimal materials among all possible compounds
Skoltech researchers have offered a solution to the problem of searching for materials with required properties among all possible combinations of chemical elements.

Read More: Algorithm News and Algorithm Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.