Nav: Home

New diamond harder than ring bling

December 11, 2016

The Australian National University (ANU) has led an international project to make a diamond that's predicted to be harder than a jeweller's diamond and useful for cutting through ultra-solid materials on mining sites.

ANU Associate Professor Jodie Bradby said her team - including ANU PhD student Thomas Shiell and experts from RMIT, the University of Sydney and the United States - made nano-sized Lonsdaleite, which is a hexagonal diamond only found in nature at the site of meteorite impacts such as Canyon Diablo in the US.

"This new diamond is not going to be on any engagement rings. You'll more likely find it on a mining site - but I still think that diamonds are a scientist's best friend. Any time you need a super-hard material to cut something, this new diamond has the potential to do it more easily and more quickly," said Dr Bradby from the ANU Research School of Physics and Engineering.

Her research team made the Lonsdaleite in a diamond anvil at 400 degrees Celsius, halving the temperature at which it can be formed in a laboratory.

"The hexagonal structure of this diamond's atoms makes it much harder than regular diamonds, which have a cubic structure. We've been able to make it at the nanoscale and this is exciting because often with these materials 'smaller is stronger'."

Lonsdaleite is named after the famous British pioneering female crystallographer Dame Kathleen Lonsdale, who was the first woman elected as a Fellow to the Royal Society.

The research is published in Scientific Reports.

Co-researcher Professor Dougal McCulloch from RMIT said the collaboration of world-leading experts in the field was essential to the project's success.

"The discovery of the nano-crystalline hexagonal diamond was only made possible by close collaborative ties between leading physicists from Australia and overseas, and the team utilised state-of-the-art instrumentation such as electron microscopes," he said.

Corresponding author from the University of Sydney, Professor David McKenzie, said he was doing the night shift in the United States laboratory as part of the research when he noticed a little shoulder on the side of a peak.

"And it didn't mean all that much until we examined it later on in Melbourne and in Canberra - and we realised that it was something very, very different."
-end-
Images related to the research are available via this Dropbox link.

You can also watch the video interview with the researchers on the ANU YouTube channel.

FOR INTERVIEW:

Associate Professor Jodie Bradby
ANU Research School of Physics and Engineering
T: +61 2 6125 4916
M: +61 40 227 6767
E: jodie.bradby@anu.edu.au

Professor Dougal McCulloch
Director, RMIT Microscopy and Microanalysis Facility
T: +61 3 9925 3391
E: dougal.mcculloch@rmit.edu.au

Professor David McKenzie
The Applied and Plasma Physics research group, University of Sydney
T: +61 2 9351 5986
M: +61 413 385 850
E: david.mckenzie@sydney.edu.au

FOR MEDIA ASSISTANCE:

Will Wright
ANU media team
T: +61 2 6125 7979
M: +61 478 337 740
E: media@anu.edu.au

David Glanz
RMIT Senior Manager, Marketing and Communications
T: +61 3 9925 2807
M: +61 438 547 723
E: david.glanz@rmit.edu.au

Vivienne Reiner
University of Sydney media team
T: +61 2 9351 2390
M: +61 438 021 390
E: vivienne.reiner@sydney.edu.au

Australian National University

Related Diamond Articles:

Engaging diamond for next-era transistors
Most transistors are silicon-based and silicon technology has driven the computer revolution.
Looking at light to explore superconductivity in boron-diamond films
More than a decade ago, researchers discovered that when they added boron to the carbon structure of diamond, the combination was superconductive.
Unpolarized single-photon generation with true randomness from diamond
The Tohoku University research group of Professor Keiichi Edamatsu and Postdoctoral fellow Naofumi Abe has demonstrated dynamically and statically unpolarized single-photon generation using diamond.
The world's largest diamond foil
Material researchers of Friedrich-Alexander Universität Erlangen Nürnberg have come a step closer to their goal of providing large diamond foils for practical applications.
How fullerite becomes harder than diamond
The scientists suggested that under pressure, part of the fullerite turned into diamond, while the other part remained as fullerite, but in a compressed state within the diamond.
Dr. Sakamoto explains signaling pathways in the pathogenesis of diamond blackfan anemia
The results from this research have shed light on a previously undiscovered link between the well-studied p53 pathway and the lesser known pathways associated with ribosome biogenesis and nucleotide metabolism in DBA.
New diamond harder than ring bling
The Australian National University has led an international project to make a diamond that's predicted to be harder than a jeweler's diamond and useful for cutting through ultra-solid materials on mining sites.
'Diamond-age' of power generation as nuclear batteries developed
New technology has been developed that uses nuclear waste to generate electricity in a nuclear-powered battery.
Diamond nanothread: Versatile new material could prove priceless for manufacturing
QUT's Dr Haifei Zhan is leading a global effort to work out how many ways humanity can use a newly-invented material with enormous potential -- diamond nanothread.
Defects in diamond: A unique platform for optical data storage in 3-D
There are limitations on storing large volumes of data. Home-computer hard disk drives consume a lot of power and are limited to a few terabytes per drive.

Related Diamond Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#517 Life in Plastic, Not Fantastic
Our modern lives run on plastic. It's in the computers and phones we use. It's in our clothing, it wraps our food. It surrounds us every day, and when we throw it out, it's devastating for the environment. This week we air a live show we recorded at the 2019 Advancement of Science meeting in Washington, D.C., where Bethany Brookshire sat down with three plastics researchers - Christina Simkanin, Chelsea Rochman, and Jennifer Provencher - and a live audience to discuss plastics in our oceans. Where they are, where they are going, and what they carry with them. Related links:...