Natural route masters

December 11, 2017

Few people draw a parallel between bumblebees and travelling salesmen but that's what comes after months of tracking the flight paths of the pollinators as they forage for food in and around an array of artificial flowers in the fields within Rothamsted Research.

Bees, like those archetypal salesmen it seems, refine their routes around multiple destinations and, in the process, provide insights into analogous problems in logistics and robotics and into how land might be used more efficiently, reveals research published today in ">Scientific Reports.

"We tempted the bees with shortcuts between feeding stations that increased the total distance they travelled to visit all the feeders," says Joe Woodgate, lead author from Queen Mary University of London, which drew on Rothamsted's technical expertise as well as its landscape for the research.

"We then watched as they explored different flight paths around the feeders and developed habitual routes," notes Woodgate, who is a postdoctoral researcher in QMUL's School of Biological and Chemical Sciences.

The team found that, initially, the bees often fell for the trick, opting for short-term gain over long-term pain. But they gradually refined their flight paths, reducing their overall travel distance, though without ever visiting the feeders in the best possible order. "In this study, we took the unusual step of following individuals continuously as they gradually developed solutions to a spatial problem; previous work relied on only a few snapshots of the bees' activity," notes Woodgate.

He adds: "The result is one of the largest and most complete datasets on bee flight ever recorded and provides an in-depth look at route development for the first time ever."

The team used harmonic radar to track 6 bumblebees making 201 flights in total; a tiny transponder on the bee doubles the frequency of the incoming signal to the next harmonic so that the reflected signals from the bee can be distinguished from reflections from elsewhere "We tracked every single foraging flight that the bees undertook as they learned about the feeder array, with the radar telling us the position of the bee every three seconds, to an accuracy of 2 metres," says Woodgate.

He adds: "Animals cannot inspect a map to find out where the best food sources are or plan how to get to them; instead, they must explore the landscape, discovering locations one by one, and then they face the challenge of integrating their spatial memories into an efficient route.

"Only by following the flight paths of bees as they explore and try to generate better routes can we start to truly understand how animals solve route optimisation problems."

The radar tracks have yielded videos, in the form of animated heatmaps, that show the routes taken by the bees as they foraged. These heatmaps demonstrate graphically how some segments of route became habitual while other explorations were forgotten as preferred flight paths evolved.

"Understanding how small-brained animals like bees find efficient rules-of-thumb to accomplish complex and flexible behaviours has great potential to inform the development of AI and advanced robots," says James Makinson, co-author and Woodgate's fellow postgraduate researcher at QMUL.

"It's also important to understand how bees and other pollinating insects search for food and use the landscape," notes Makinson. Such knowledge, he says, "is crucial to managing the risks to pollinator services posed by habitat loss and agricultural intensification." Pollinator services are threatened by intensification, fragmentation and habitat loss, says Andy Reynolds, theoretical physicist at Rothamsted and the team's data analyst. "Accessing and forecasting these risks requires an understanding of how pollinators use the landscape."

The global economic value of ecosystem services is worth around 10% of global food production, or over $200 billion, says Jason Lim, the team's senior electronics and radar engineer at Rothamsted: "The need to understand the movement of both migratory insect pests and pollinators is more important than ever if agricultural production is going to feed a human population of 10 billion by 2050."
For images, videos, research paper and accompanying material, see lead author's DropBox link.

Rothamsted Research

Related Robotics Articles from Brightsurf:

Borrowing from robotics, scientists automate mapping of quantum systems
Riddhi Gupta has taken an algorithm used for autonomous vehicles and adapted it to help characterise and stabilise quantum technology.

COVID-19 should be wake-up call for robotics research
Robots could perform some of the 'dull, dirty and dangerous' jobs associated with combating the COVID-19 pandemic, but that would require many new capabilities not currently being funded or developed, an editorial in the journal Science Robotics argues.

How robots can help combat COVID-19: Science Robotics editorial
Can robots be effective tools in combating the COVID-19 pandemic?

Novel use of robotics for neuroendovascular procedures
The advanced technology has the potential to change acute stroke treatment.

Robotics: Teaming for future soldier combat
The US Army's investment for the 10 year, Army-led foundational research program has resulted in advanced science in four critical areas of ground combat robotics that affect the way US Warfighters see, think, move and team.

New haptic arm places robotics within easy reach
Imagine being able to build and use a robotic device without the need for expensive, specialist kit or skills.

AI-guided robotics enable automation of complex synthetic biological molecules
This article describes a platform that combines artificial intelligence-driven synthesis planning, flow chemistry and a robotically controlled experimental platform to minimize the need for human intervention in the synthesis of small organic molecules.

A step forward in wearable robotics: Exosuit assists with both walking and running
A soft robotic exosuit -- worn like a pair of shorts -- can make both walking and running easier for the wearer, a new study reports.

A first in medical robotics: Autonomous navigation inside the body
Bioengineers at Boston Children's Hospital report the first demonstration of a robot able to navigate autonomously inside the body.

Engineers build a soft robotics perception system inspired by humans
An international team of researchers has developed a perception system for soft robots inspired by the way humans process information about their own bodies in space and in relation to other objects and people.

Read More: Robotics News and Robotics Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to